定義:若函數(shù)在某一區(qū)間D上任取兩個(gè)實(shí)數(shù)、,且,都有,則稱函數(shù)在區(qū)間D上具有性質(zhì)L。
(1)寫出一個(gè)在其定義域上具有性質(zhì)L的對(duì)數(shù)函數(shù)(不要求證明)。
(2)對(duì)于函數(shù),判斷其在區(qū)間上是否具有性質(zhì)L?并用所給定義證明你的結(jié)論。
(3)若函數(shù)在區(qū)間(0,1)上具有性質(zhì)L,求實(shí)數(shù)的取值范圍。
(1)(2)有,證明見解析(3)
【解析】本題以函數(shù)為載體,考查新定義,考查恒成立問題,解題的關(guān)鍵是對(duì)新定義的理解,恒成立問題采用分離參數(shù)法.
(1)寫出的函數(shù)是下凹的函數(shù)即可;
(2)函數(shù)在區(qū)間上具有性質(zhì)L,運(yùn)用定義法加以證明即可。
(3)任取x1、x2∈(0,1),且x1≠x2則>0,只需要在x1、x2∈(0,1)上恒成立,故可求實(shí)數(shù)a的取值范圍.
解:(1)(或其它底在(0,1)上的對(duì)數(shù)函數(shù))!2分
(2)函數(shù)在區(qū)間上具有性質(zhì)L!3分
證明:任取、,且
則
、且,,
即>0,
所以函數(shù)在區(qū)間上具有性質(zhì)L!7分
(3)任取、,且
則
、且,,
要使上式大于零,必須在、上恒成立,
即,,即實(shí)數(shù)的取值范圍為……………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
f(x1)+f(x2) |
2 |
x1+x2 |
2 |
1 |
x |
1 |
x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年福建省羅源縣第一中學(xué)高一上學(xué)期期中考試數(shù)學(xué) 題型:解答題
((本題14分)定義:若函數(shù)在某一區(qū)間D上任取兩個(gè)實(shí)數(shù)、,且,都有,則稱函數(shù)在區(qū)間D上具有性質(zhì)L。
(1)寫出一個(gè)在其定義域上具有性質(zhì)L的對(duì)數(shù)函數(shù)(不要求證明)。
(2)對(duì)于函數(shù),判斷其在區(qū)間上是否具有性質(zhì)L?并用所給定義證明你的結(jié)論。
(3)若函數(shù)在區(qū)間(0,1)上具有性質(zhì)L,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年福建省高一上學(xué)期期中考試數(shù)學(xué) 題型:解答題
((本題14分)定義:若函數(shù)在某一區(qū)間D上任取兩個(gè)實(shí)數(shù)、,且,都有,則稱函數(shù)在區(qū)間D上具有性質(zhì)L。
(1)寫出一個(gè)在其定義域上具有性質(zhì)L的對(duì)數(shù)函數(shù)(不要求證明)。
(2)對(duì)于函數(shù),判斷其在區(qū)間上是否具有性質(zhì)L?并用所給定義證明你的結(jié)論。
(3)若函數(shù)在區(qū)間(0,1)上具有性質(zhì)L,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省福州市八縣(市)一中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com