等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1,a32=9a2a6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項(xiàng)和.

(1);(2)

解析試題分析:(1)由,從而求,再代入,代入等比數(shù)列通項(xiàng)公式求;(2)求數(shù)列前n項(xiàng)和,首先考察數(shù)列通項(xiàng)公式,根據(jù)通項(xiàng)公式的不同形式選擇相應(yīng)的求和方法,由=,故求得,利用裂項(xiàng)相消法求和.
試題解析:(1)設(shè)數(shù)列{an}的公比為q.由,所以.由條件可知
,所以.故數(shù)列{an}的通項(xiàng)公式為.
(2) .
.

所以數(shù)列的前n項(xiàng)和為.
考點(diǎn):1、等比數(shù)列的通項(xiàng)公式;2、等比數(shù)列的性質(zhì);3、數(shù)列求和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Snan n-1=2(n∈N*),設(shè)cn=2nan.
(1)求證:數(shù)列{cn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式.
(2)按以下規(guī)律構(gòu)造數(shù)列{bn},具體方法如下:
b1c1,b2c2c3b3c4c5c6c7,…,第n項(xiàng)bn由相應(yīng)的{cn}中2n-1項(xiàng)的和組成,求數(shù)列{bn}的通項(xiàng)bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列是遞增的等差數(shù)列,且,
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和的最小值;
(3)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x2-(a-1)x-b-1,當(dāng)x∈[b, a]時(shí),函數(shù)f(x)的圖像關(guān)于y軸對(duì)稱,數(shù)列的前n項(xiàng)和為Sn,且Sn=f(n).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),Tn=b1+b2++bn,若Tn>2m,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)已知等比數(shù)列滿足.
(1)求數(shù)列的前15項(xiàng)的和
(2)若等差數(shù)列滿足,,求數(shù)列的前項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列,滿足,,且對(duì)任意的正整數(shù),均成等比數(shù)列.
(1)求、的值;
(2)證明:均成等比數(shù)列;
(3)是否存在唯一正整數(shù),使得恒成立?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列具有性質(zhì):①為正數(shù);②對(duì)于任意的正整數(shù),當(dāng)為偶數(shù)時(shí),;當(dāng)為奇數(shù)時(shí),
(1)若,求數(shù)列的通項(xiàng)公式;
(2)若成等差數(shù)列,求的值;
(3)設(shè),數(shù)列的前項(xiàng)和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中,且點(diǎn)在直線上。
(1)求數(shù)列的通項(xiàng)公式;
(2)若函數(shù)求函數(shù)的最小值;
(3)設(shè)表示數(shù)列的前項(xiàng)和.試問:是否存在關(guān)于的整式,使得對(duì)于一切不小于2的自然數(shù)恒成立?若存在,寫出的解析式,并加以證明;若不存在,試說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等比數(shù)列的首項(xiàng)為,公比為為正整數(shù)),且滿足的等差中項(xiàng);數(shù)列滿足).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)試確定的值,使得數(shù)列為等差數(shù)列;
(Ⅲ)當(dāng)為等差數(shù)列時(shí),對(duì)每個(gè)正整數(shù),在之間插入個(gè)2,得到一個(gè)新數(shù)列. 設(shè)是數(shù)列 的前項(xiàng)和,試求滿足的所有正整數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案