(2008•盧灣區(qū)二模)若A、B、C、D、E五人隨機(jī)地乘坐兩輛出租車,每輛車最多能乘坐4人,則A、B、C在同一輛車,D、E在另一輛車上的概率為
1
15
1
15
(用分?jǐn)?shù)表示).
分析:由題意,本題是一個求概率的問題,事件“A、B、C在同一輛車,D、E在另一輛車上”包含兩個基本事件,由于一輛出租車最多可乘坐4人,故五人乘坐兩輛車,不同的乘坐方式兩種,一種是四人一車,另一人一車;另一種一車三人,一車二人,分類計算出總的基本事件數(shù),再由公式求出事件“A、B、C在同一輛車,D、E在另一輛車上”發(fā)生的概率
解答:解:由題意易得事件“A、B、C在同一輛車,D、E在另一輛車上”包含兩個基本事件
五人乘坐兩輛車,不同的乘坐方式兩種,一種是四人一車,另一人一車;另一種一車三人,一車二人,
若四人一車,另一人一車,則不同的乘坐方法種數(shù)為C54×A22=10
若另一種一車三人,一車二人,則不同的乘坐方法種數(shù)為C53×A22=20
綜上,總的乘坐方法種數(shù)是10+20=30
所以事件“A、B、C在同一輛車,D、E在另一輛車上”發(fā)生的概率是
2
30
=
1
15

故答案為
1
15
點評:本題考查的知識點是等可能事件的概率,古典概型計算公式,其中根據(jù)已知條件計算出基本事件的總數(shù)和滿足條件的基本事件個數(shù)是解答本題的關(guān)鍵,本題中理解乘坐方式是難點
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•盧灣區(qū)二模)如圖,在正方體ABCD-A1B1C1D1中,若E為A1C1與B1D1的交點,F(xiàn)為DD1的中點,則直線EF與直線BC所成角的大小為
arccos
3
3
arccos
3
3
(用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•盧灣區(qū)二模)不等式
2-x
x+3
>1
的解集為
{x|-3<x<-
1
2
}
{x|-3<x<-
1
2
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•盧灣區(qū)二模)計算:
lim
n→∞
(1+
2
3n+1
)n
=
e
2
3
e
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•盧灣區(qū)二模)若{an}是一個以2為首項,-2為公比的等比數(shù)列,則數(shù)列{an2}的前n項的和Sn=
4(4n-1)
3
4(4n-1)
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•盧灣區(qū)二模)函數(shù)f(x)=2x+1-1(x>0)的反函數(shù)f-1(x)=
log2(x+1)-1(x>1)
log2(x+1)-1(x>1)

查看答案和解析>>

同步練習(xí)冊答案