【題目】下列各組函數(shù)中,表示同一個函數(shù)的是( )
A.f(x)=x2和f(x)=(x+1)2
B.f(x)= 和f(x)=
C.f(x)=logax2和f(x)=2logax
D.f(x)=x﹣1和f(x)=
【答案】B
【解析】解:對于A,f(x)=x2和f(x)=(x+1)2的對應(yīng)關(guān)系不同,不是同一函數(shù);
對于B,f(x)= =1(x>0)和f(x)= =1(x>0),定義域相同,對應(yīng)關(guān)系也相同,是同一函數(shù);
對于C,f(x)=logax2=2loga|x|(x≠0)和f(x)=2logax(x>0),定義域不同,對應(yīng)關(guān)系也不同,不是同一函數(shù);
對于D,f(x)=x﹣1(x∈R)和f(x)= =|x﹣1|(x∈R),對應(yīng)關(guān)系不同,不是同一函數(shù);
故選:B.
【考點精析】本題主要考查了判斷兩個函數(shù)是否為同一函數(shù)的相關(guān)知識點,需要掌握只有定義域和對應(yīng)法則二者完全相同的函數(shù)才是同一函數(shù)才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分) 某中學(xué)的環(huán)保社團參照國家環(huán)境標準制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會超過):
空氣質(zhì)量指數(shù) | ||||||
空氣質(zhì)量等級 | 級優(yōu) | 級良 | 級輕度污染 | 級中度污染 | 級重度污染 | 級嚴重污染 |
該社團將該校區(qū)在年天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率.
(Ⅰ)請估算年(以天計算)全年空氣質(zhì)量優(yōu)良的天數(shù)(未滿一天按一天計算);
(Ⅱ)該校年月、日將作為高考考場,若這兩天中某天出現(xiàn)級重度污染,需要凈化空氣費用元,出現(xiàn)級嚴重污染,需要凈化空氣費用元,記這兩天凈化空氣總費用為元,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某小學(xué)隨機抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖由圖中數(shù)據(jù)可知身高在[120,130]內(nèi)的學(xué)生人數(shù)為( )
A.20
B.25
C.30
D.35
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),設(shè).
(1)判斷函數(shù)零點的個數(shù),并給出證明;
(2)首項為的數(shù)列滿足:①;②.其中.求證:對于任意的,均有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,.
(Ⅰ)判斷直線能否與曲線相切,并說明理由;
(Ⅱ)若不等式有且僅有兩個整數(shù)解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若方程f(x)=a有四個不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 則x3(x1+x2)+ 的取值范圍是( )
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“特羅卡”是靶向治療肺癌的一種藥物,為了研究其療效,醫(yī)療專家借助一些肺癌患者,進行人體試驗,得到如右丟失一些數(shù)據(jù)的2×2列聯(lián)表:
疫苗效果試驗列
感染 | 未感染 | 總計 | |
沒服用 | 20 | 30 | 50 |
服用 | X | y | 50 |
總計 | M | N | 100 |
設(shè)從沒服用該藥物的肺癌患者中任選兩人,未感染人數(shù)為ξ;從服用該藥物的肺癌患者中任選兩人,未感染人數(shù)為η,研究人員曾計算過得出:P(ξ=0)= P(η=0).
(1)求出列聯(lián)表中數(shù)據(jù)x,y,M,N的值.
(2)能否有97.5%的把握認為該藥物對治療肺癌有療效嗎?
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
注:K2= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex(x3﹣3x+2﹣c)+x(x≥﹣2),若不等式f(x)≥0恒成立,則實數(shù)c的最大值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如表中給出了2011年~2015年某市快遞業(yè)務(wù)總量的統(tǒng)計數(shù)據(jù)(單位:百萬件)
年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
快遞業(yè)務(wù)總量 | 34 | 55 | 71 | 85 | 105 |
(1)在圖中畫出所給數(shù)據(jù)的折線圖;
(2)建立一個該市快遞量y關(guān)于年份代碼x的線性回歸模型;
(3)利用(2)所得的模型,預(yù)測該市2016年的快遞業(yè)務(wù)總量.
附:回歸直線方程的斜率和截距的最小二乘估計公式分別為:
斜率: ,縱截距: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com