x | -1 | 0 | 1 | 2 | 3 |
ex | 0.37 | 1 | 2.72 | 7.39 | 20.09 |
x+6 | 5 | 6 | 7 | 8 | 9 |
分析 求出過點(1,2)且在坐標軸上的截距相等的直線方程,可判斷①;
求解不等式f(x)>2x+4,可判斷②;
分析方程ex-x-6=0根的位置,可判斷③;
求出橢圓的離心率,可判斷④;
求出實數(shù)a的范圍,可判斷⑤;
求出函數(shù)的零點個數(shù),可判斷⑥.
解答 解:①過點(1,2)且在坐標軸上的截距相等的直線方程是x+y=3或2x-y=0,故錯誤;
②函數(shù)f(x)的定義域是R,f(-1)=2,對?x∈R,f′(x)>2,
g(x)=f(x)-2x滿足g′(x)=f′(x)-2>0,
即g(x)=f(x)-2x為增函數(shù),且g(-1)=4
則f(x)>2x+4可化為:g(x)>4=g(-1)
解得:x∈(-1,+∞),故正確;
③根據(jù)表格中的數(shù)據(jù),可以判定方程ex-x-6=0的一個根所在的區(qū)間為(2,3),正確;
④已知雙曲線的漸近線方程是5x±12y=0,
當焦點在x軸上時,則以雙曲線的頂點為焦點,以雙曲線的焦點為頂點的橢圓的離心率e=$\frac{12}{13}$;
當焦點在y軸上時,則以雙曲線的頂點為焦點,以雙曲線的焦點為頂點的橢圓的離心率e=$\frac{5}{13}$;
綜上可得:以雙曲線的頂點為焦點,以雙曲線的焦點為頂點的橢圓的離心率e=$\frac{12}{13}$,錯誤;
⑤解:f′(x)=$\frac{2}{x}$+2,
∴f(x)在(0,+∞)上單調遞增;
∴由f[f(b)]=b,得f(b)=b;
則f(x)=x在[1,e]上有根;
即2lnx+2x-a=x;
∴a=2lnx+x;
令h(x)=2lnx+x,h′(x)=$\frac{2}{x}$+1>0;
∴h(x)在[1,e]上單調遞增;
∴h(x)min=h(1)=1,h(x)max=h(e)=2+e;
∴a∈[1,2+e];
即實數(shù)a的取值范圍是[1,2+e].正確;
⑥由題意得,f(x)=(1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$)cos2x=0,
①當cos2x=0時,由x∈[-3,3]得2x∈[-6,6],
解得x=$±\frac{π}{4}$或±$\frac{3π}{4}$;
②當1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$=0時,
設g(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$,
則g′(x)=1-x+x2-x3+…-x2013+x2014=$\left\{\begin{array}{l}2015,x=-1\\ \frac{1+{x}^{2015}}{1+x},x≠-1\end{array}\right.$,
∴g′(x)>0,則g(x)在[-3,3]上單調遞增,
∵g(-3)<0,g(3)>0,
∴g(x)在[-3,3]上有且僅有1個零點,
顯然g($±\frac{π}{4}$)≠0、g(±$\frac{3π}{4}$)≠0,
所以f(x)共有5個零點,正確;
故答案為:②③⑤⑥
點評 本題以命題的真假判斷與應用為載體,考查直線方程,零點個數(shù),抽象不等式的解法等知識點,難度中檔.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①③④ | B. | ②④⑤ | C. | ③④⑤ | D. | ②③⑤ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com