【題目】已知函數(shù),若方程有四個不等實(shí)根,不等式恒成立,則實(shí)數(shù)的最大值為(  )

A. B. C. D.

【答案】B

【解析】

求得2<x<4fx)的解析式,作出函數(shù)fx)的圖象,求得0<mln2,x1x2x3x4,x1+x4x2+x3=4,x1x2=1,(4﹣x3)(4﹣x4)=1,,運(yùn)用數(shù)形結(jié)合思想和參數(shù)分離,以及換元法,可得k的范圍.

當(dāng)2<x<4時,0<4﹣x<2,所以fx)=f(4﹣x)=|ln(4﹣x)|,

由此畫出函數(shù)fx)的圖象

由題意知,f(2)=ln2,故0<mln2,且x1x2x3x4,x1+x4x2+x3=4,

x1x2=1,(4﹣x3)(4﹣x4)=1,,

,

可知,

,

設(shè)tx1+x2,

上單調(diào)遞增,所以

,

實(shí)數(shù)的最大值為

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,由甲、乙兩個元件組成一個并聯(lián)電路,每個元件可能正;蚴.設(shè)事件A=“甲元件正常”,B=“乙元件正!.

1)寫出表示兩個元件工作狀態(tài)的樣本空間;

2)用集合的形式表示事件AB以及它們的對立事件;

3)用集合的形式表示事件和事件,并說明它們的含義及關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)fx)的最小值為1,且f0)=f2)=3

1)求fx)的解析式;

2)若fx)在區(qū)間[2aa+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;

3)在區(qū)間[11]上,yfx)的圖象恒在y2x+2m+1的圖象上方,試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,是橢圓上的兩個不同點(diǎn).

(1)若,且點(diǎn)所在直線方程為,求的值;

(2)若直線的斜率之積為,線段上有一點(diǎn)滿足,連接并廷長交橢圓于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:52,54,54,56,56,56,55,55,55,55.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加6后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應(yīng)相同的是(  )

A. 眾數(shù) B. 平均數(shù)

C. 中位數(shù) D. 標(biāo)準(zhǔn)差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“搜索指數(shù)”是網(wǎng)民通過搜索引擎,以每天搜索關(guān)鍵詞的次數(shù)為基礎(chǔ)所得到的統(tǒng)計指標(biāo).“搜索指數(shù)”越大,表示網(wǎng)民對該關(guān)鍵詞的搜索次數(shù)越多,對該關(guān)鍵詞相關(guān)的信息關(guān)注度也越高.下圖是2017年9月到2018年2月這半年中,某個關(guān)鍵詞的搜索指數(shù)變化的走勢圖.

根據(jù)該走勢圖,下列結(jié)論正確的是( )

A. 這半年中,網(wǎng)民對該關(guān)鍵詞相關(guān)的信息關(guān)注度呈周期性變化

B. 這半年中,網(wǎng)民對該關(guān)鍵詞相關(guān)的信息關(guān)注度不斷減弱

C. 從網(wǎng)民對該關(guān)鍵詞的搜索指數(shù)來看,去年10月份的方差小于11月份的方差

D. 從網(wǎng)民對該關(guān)鍵詞的搜索指數(shù)來看,去年12月份的平均值大于今年1月份的平均值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=CBDAB=BD

1)證明:平面ACD⊥平面ABC;

2)過AC的平面交BD于點(diǎn)E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角DAEC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,若過點(diǎn)且斜率為1的直線與拋物線交于 兩點(diǎn),且.

(1)求拋物線的方程;

(2)若平行于的直線與拋物線相切于點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)處有極值為10,求的值;

(2)對任意,在區(qū)間單調(diào)增,求的最小值;

(3)若,且過點(diǎn)能作的三條切線,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案