已知橢圓的離心率,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A,B,已知點(diǎn)A的坐標(biāo)為(-a,0),點(diǎn)Q(0,y)在線段AB的垂直平分線上,且,求y的值.
【答案】分析:(1)由離心率求得a和c的關(guān)系,進(jìn)而根據(jù)c2=a2-b2求得a和b的關(guān)系,進(jìn)而根據(jù) 求得a和b,則橢圓的方程可得.
(2)由(1)可求得A點(diǎn)的坐標(biāo),設(shè)出點(diǎn)B的坐標(biāo)和直線l的斜率,表示出直線l的方程與橢圓方程聯(lián)立,消去y,由韋達(dá)定理求得點(diǎn)B的橫坐標(biāo)的表達(dá)式,進(jìn)而利用直線方程求得其縱坐標(biāo)表達(dá)式,表示出|AB|進(jìn)而求得k,則直線的斜率可得.設(shè)線段AB的中點(diǎn)為M,當(dāng)k=0時(shí)點(diǎn)B的坐標(biāo)是(2,0),線段AB的垂直平分線為y軸,進(jìn)而根據(jù) 求得y;當(dāng)k≠0時(shí),可表示出線段AB的垂直平分線方程,令x=0得到y(tǒng)的表達(dá)式根據(jù) 求得y;綜合答案可得.
解答:解:(1)由e=,得3a2=4c2
再由c2=a2-b2,解得a=2b.
由題意可知 ,即ab=2.
解方程組 得a=2,b=1.
所以橢圓的方程為
(2)由(Ⅰ)可知點(diǎn)A的坐標(biāo)是(-2,0).
設(shè)點(diǎn)B的坐標(biāo)為(x1,y1),直線l的斜率為k.
則直線l的方程為y=k(x+2).
于是A、B兩點(diǎn)的坐標(biāo)滿足方程組
消去y并整理,得(1+4k2)x2+16k2x+(16k2-4)=0.
,得 .從而
所以
設(shè)線段AB的中點(diǎn)為M,
則M的坐標(biāo)為
以下分兩種情況:
①當(dāng)k=0時(shí),點(diǎn)B的坐標(biāo)是(2,0),
線段AB的垂直平分線為y軸,
于是
,得
②當(dāng)k≠0時(shí),線段AB的垂直平分線方程為

令x=0,解得
,

=
=,
整理得7k2=2.故
所以
綜上,
點(diǎn)評:本小題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、兩點(diǎn)間的距離公式、直線的傾斜角、平面向量等基礎(chǔ)知識,考查用代數(shù)方法研究圓錐曲線的性質(zhì)及數(shù)形結(jié)合的思想,考查綜合分析與運(yùn)算能力.綜合性強(qiáng),難度大,易出錯(cuò).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分13分)

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè),,是橢圓上關(guān)于軸對稱的任意兩個(gè)不同的點(diǎn),連結(jié)交橢圓于另一點(diǎn),證明直線軸相交于定點(diǎn);

(Ⅲ)在(Ⅱ)的條件下,過點(diǎn)的直線與橢圓交于,兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè),,是橢圓上關(guān)于軸對稱的任意兩個(gè)不同的點(diǎn),連結(jié)交橢圓于另一點(diǎn),證明直線軸相交于定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分13分)

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè),,是橢圓上關(guān)于軸對稱的任意兩個(gè)不同的點(diǎn),連結(jié)交橢圓于另一點(diǎn),求直線的斜率的取值范圍;

(Ⅲ)在(Ⅱ)的條件下,證明直線軸相交于定點(diǎn).

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省成都外國語學(xué)校2011-2012學(xué)年高三2月月考(數(shù)學(xué)文). 題型:解答題

 

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè),,是橢圓上關(guān)于軸對稱的任意兩個(gè)不同的點(diǎn),連結(jié)交橢圓于另一點(diǎn),證明直線軸相交于定點(diǎn);

(Ⅲ)在(Ⅱ)的條件下,過點(diǎn)的直線與橢圓交于,兩點(diǎn),求的取值范圍.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省成都外國語學(xué)校2011-2012學(xué)年高三2月月考(數(shù)學(xué)理) 題型:解答題

 

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè),是橢圓上關(guān)于軸對稱的任意兩個(gè)不同的點(diǎn),連結(jié)交橢圓于另一點(diǎn),證明直線軸相交于定點(diǎn);

(Ⅲ)在(Ⅱ)的條件下,過點(diǎn)的直線與橢圓交于,兩點(diǎn),求的取值范圍.

 

 

查看答案和解析>>

同步練習(xí)冊答案