設(shè)直線(xiàn)y=x+b與橢圓
x2
2
+y2=1
相交于A,B兩個(gè)不同的點(diǎn).
(1)求實(shí)數(shù)b的取值范圍;
(2)當(dāng)b=1時(shí),求|
AB
|
分析:(1)由直線(xiàn)y=x+b 與
x2
2
+y2=1
由2個(gè)交點(diǎn)可得方程
y=x+b
x2
2
+y2=1 
有2個(gè)不同的解,整理得3x2+4bx+2b2-2=0有2個(gè)解△=16b2-12(2b2-2)>0,解不等式可求
(2)設(shè)A(x1,y1),B(x2,y2),當(dāng)b=1 時(shí),可求A,B的坐標(biāo),代入公式|
AB
|
=
(x1-x2)2+(y1-y2)2
可求或利用弦長(zhǎng)公式
解答:解:(1)將y=x+b 代入
x2
2
+y2=1
,消去y,整理得3x2+4bx+2b2-2=0.①…(2分)
因?yàn)橹本(xiàn)y=x+b 與橢圓
x2
2
+y2=1
 相交于A,B 兩個(gè)不同的點(diǎn),
∴△=16b2-12(2b2-2)=24-8b2>0(4分)
-
3
<b<
3
(6分)
(2)設(shè)A(x1,y1),B(x2,y2),當(dāng)b=1 時(shí),方程①為3x2+4x=0.…(8分)
解得x1=0,x2=-
4
3

此時(shí)y1=1,y2=-
1
3
(10分)
|
AB
|
=
(x1-x2)2+(y1-y2)2
=
4
2
3
(12分)
(利用弦長(zhǎng)公式也可以)
點(diǎn)評(píng):本題主要考查了直線(xiàn)與橢圓的相交關(guān)系的應(yīng)用,方程思想的應(yīng)用是解答直線(xiàn)與曲線(xiàn)位置關(guān)系的常用工具,要注意體會(huì)掌握
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上(如圖),且OC=1,OA=a+1(a>1),點(diǎn)D在邊OA上,滿(mǎn)足OD=a.分別以O(shè)D、OC為長(zhǎng)、短半軸的橢圓在矩形及其內(nèi)部的部分為橢圓弧CD.直線(xiàn)l:y=-x+b與橢圓弧相切,與OA交于點(diǎn)E.
(1)求證:b2-a2=1;
(2)設(shè)直線(xiàn)l將矩形OABC分成面積相等的兩部分,求直線(xiàn)l的方程;
(3)在(2)的條件下,設(shè)圓M在矩形及其內(nèi)部,且與l和線(xiàn)段EA都相切,求面積最大的圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(15分)在平面直角坐標(biāo)系xOy中,矩形OABC的邊OAOC分別在x軸和y軸上(如圖),且OC=1,OA=a+1(a>1),點(diǎn)D在邊OA上,滿(mǎn)足OD=a. 分別以OD、OC為長(zhǎng)、短半軸的橢圓在矩形及其內(nèi)部的部分為橢圓弧CD. 直線(xiàn)ly=-x+b與橢圓弧相切,與AB交于點(diǎn)E.

(1)求證:

(2)設(shè)直線(xiàn)l將矩形OABC分成面積相等的兩部分,求直線(xiàn)l的方程;

(3)在(2)的條件下,設(shè)圓M在矩形及其內(nèi)部,且與l和線(xiàn)段EA都相切,求面積最大的圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省荊州市公安三中高三(上)數(shù)學(xué)積累測(cè)試卷11(解析版) 題型:解答題

已知橢C:+=1(a>b>0)的焦點(diǎn)為F1,F(xiàn)2,P是橢圓上任意一點(diǎn),若以坐標(biāo)原點(diǎn)為圓心,橢圓短軸長(zhǎng)為直徑的圓經(jīng)過(guò)橢圓的焦點(diǎn),且△PF1F2的周長(zhǎng)為4
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線(xiàn)的l是圓O:x2+y2=上動(dòng)點(diǎn)P(x,y)(x-y≠0)處的切線(xiàn),l與橢圓C交于不同的兩點(diǎn)Q,R,證明:∠QOR的大小為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年浙江省溫州市瑞安中學(xué)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上(如圖),且OC=1,OA=a+1(a>1),點(diǎn)D在邊OA上,滿(mǎn)足OD=a.分別以O(shè)D、OC為長(zhǎng)、短半軸的橢圓在矩形及其內(nèi)部的部分為橢圓弧CD.直線(xiàn)l:y=-x+b與橢圓弧相切,與OA交于點(diǎn)E.
(1)求證:b2-a2=1;
(2)設(shè)直線(xiàn)l將矩形OABC分成面積相等的兩部分,求直線(xiàn)l的方程;
(3)在(2)的條件下,設(shè)圓M在矩形及其內(nèi)部,且與l和線(xiàn)段EA都相切,求面積最大的圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年浙江省溫州市瑞安中學(xué)高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上(如圖),且OC=1,OA=a+1(a>1),點(diǎn)D在邊OA上,滿(mǎn)足OD=a.分別以O(shè)D、OC為長(zhǎng)、短半軸的橢圓在矩形及其內(nèi)部的部分為橢圓弧CD.直線(xiàn)l:y=-x+b與橢圓弧相切,與OA交于點(diǎn)E.
(1)求證:b2-a2=1;
(2)設(shè)直線(xiàn)l將矩形OABC分成面積相等的兩部分,求直線(xiàn)l的方程;
(3)在(2)的條件下,設(shè)圓M在矩形及其內(nèi)部,且與l和線(xiàn)段EA都相切,求面積最大的圓M的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案