若θ∈(0,
π
2
),則函數(shù)y=logsinθ(1-x)>2的解集是( 。
分析:根據(jù)θ∈(0,
π
2
)判斷函數(shù)y=logsinθx的單調(diào)性,然后把不等式logsinθ(1-x)>2轉(zhuǎn)化為0<1-x<sin2θ,解出即可.
解答:解:當(dāng)θ∈(0,
π
2
)時(shí),sinθ∈(0,1),函數(shù)y=logsinθx遞減,
由logsinθ(1-x)>2可得,
1-x<sin2θ
1-x>0
,解得cos2θ<x<1.
即logsinθ(1-x)>2的解集是x∈(cos2θ,1).
故選B.
點(diǎn)評(píng):本題考查對(duì)數(shù)函數(shù)的單調(diào)性,考查對(duì)數(shù)不等式的求解,考查學(xué)生的轉(zhuǎn)化能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sin(ωx+?)-cos(ωx+?)  (0<?<π,ω>0)
為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對(duì)稱(chēng)軸的距離為
π
2

(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象向右平移
π
6
個(gè)單位后,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.
(3)若存在x0∈(0,
3
)
,使不等式f(x0)<m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(
3
sinωx+cosωx)cosωx-
1
2
(ω>0)
的最小正周期為4π.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若存在x∈[0,2π],使不等式f(x)<m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,過(guò)點(diǎn)(0,a3)的兩直線(xiàn)與拋物線(xiàn)y=-ax2相切于A、B兩點(diǎn),AD、BC垂直于直線(xiàn)y=-8,垂足分別為D、C.
(1)若a=1,求矩形ABCD面積;
(2)若a∈(0,2),求矩形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+(y-
1
4
)2=
1
16
,動(dòng)圓M與圓C外切,圓心M在x軸上方且圓M與x軸相切.
(I)求圓心軌跡M的曲線(xiàn)方程;
(II)若A(0,-2)為y軸上一定點(diǎn),Q(t,0)為x軸上一動(dòng)點(diǎn),過(guò)點(diǎn)Q且與AQ垂直的直線(xiàn)與軌跡M交于D,B兩點(diǎn)(D在線(xiàn)段BQ上),直線(xiàn)AB與軌跡M交于E點(diǎn),求
AD
AE
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若集合A={0,1,2},B={2,3},分別從A,B中隨機(jī)取一個(gè)數(shù),求取出的兩個(gè)數(shù)的和大于4的概率
(2)若集合A=[0,2],B=[2,3],分別從A,B中隨機(jī)取一個(gè)數(shù),求取出的兩個(gè)數(shù)的和大于4的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案