曲線y2=4ax與x=a圍成的平面區(qū)域繞x軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體的體積為
 
考點(diǎn):定積分
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)積分的幾何意義得出曲線y2=4ax與x=a圍成的平面區(qū)域繞x軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體的體積,求解即可V=π×∫
 
a
0
4axdx=π×2ax2|
 
a
0
=2πa3
解答: 解:∵曲線y2=4ax與x=a圍成的平面區(qū)域繞x軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體的體積,
∴V=π×∫
 
a
0
4axdx=π×2ax2|
 
a
0
=2πa3,
故答案為:2πa3
點(diǎn)評(píng):本題考查了曲線的旋轉(zhuǎn)問(wèn)題,運(yùn)用積分求解體積,屬于計(jì)算題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cosx•sin(x+
π
3
)-
3
cos2x+
3
4
,x∈R則f(x)在閉區(qū)間[-
π
4
,
π
4
]上的最大值和最小值分別為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=a2x-4,g(x)=loga|x|(a>0,且a≠1),且f(2)•g(2)<0,則函數(shù)f(x),g(x)在同一坐標(biāo)系中的大致圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線:x+ay-2=0與圓心為C的圓:(x-a)2+(y+1)2=4相交于A、B兩點(diǎn),且△ABC為等邊三角形,則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,扇形AOB的半徑OA=2,∠AOB=
π
2
,在OA的延長(zhǎng)線上有一動(dòng)點(diǎn)C,過(guò)C作CD與
AB
相切于點(diǎn)E,且與過(guò)點(diǎn)B所作的OB的垂線交CE于點(diǎn)D,問(wèn)當(dāng)點(diǎn)C在什么位置時(shí),直角梯形OCDB面積最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若全集U=R,集合A={x|x2+x-2≤0},B={y|y=log2(x+3),x∈A},則集合A∩(∁UB)=( 。
A、{x|-2≤x<0}
B、{x|0≤x≤1}
C、{x|-3<x≤-2}
D、{x|x≤-3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿足
y≥-2x
y≥x
y+x≤4
,則動(dòng)點(diǎn)P(x,y)所形成區(qū)域的面積為
 
,z=|x-2y+2|的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在半徑為R球面上有A,B,C三點(diǎn),且AB=8
3
,∠ACB=60°,球心O到平面ABC的距離為6,則半徑R=(  )
A、8B、10C、12D、14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在R上的奇函數(shù),且f(x+4)=f(x),當(dāng)x∈(-2,0)時(shí),f(x)=2x,則f(2014)+f(2015)+f(2016)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案