18.棱長為3的正四面體的四個頂點都在同一個球面上,若過該球球心的一個截面如圖,求圖中三角形的面積、該球的表面積和體積.

分析 將截面圖轉(zhuǎn)化為立體圖,求三角形面積就是求正四面體中的△ABD的面積.棱長為3的正四面體的四個頂點都在同一個球面上,其直徑為$\frac{3\sqrt{6}}{2}$,即可求出該球的表面積和體積.

解答 解:如圖球的截面圖就是正四面體中的△ABD,
已知正四面體棱長為3,
所以AD=$\frac{3\sqrt{3}}{2}$,AC=$\frac{3}{2}$,
所以CD=$\frac{3\sqrt{2}}{2}$,
截面面積是:$\frac{1}{2}×3×\frac{3\sqrt{2}}{2}$=$\frac{9\sqrt{2}}{4}$.
棱長為3的正四面體的四個頂點都在同一個球面上,其直徑為$\frac{3\sqrt{6}}{2}$,
半徑為$\frac{3\sqrt{6}}{4}$,
所以球的表面積為$\frac{27}{2}π$,體積為$\frac{27}{8}\sqrt{6}π$.

點評 本題考查球內(nèi)接多面體以及棱錐的特征,考查空間想象能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)變量x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x+y-3≥0\\ 2x-y-3≤0\end{array}\right.$則目標(biāo)函數(shù)z=2x+3y的最大值為( 。
A.7B.8C.22D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\frac{x^2}{{\sqrt{x+1}}}$,g(x)=$\frac{{\sqrt{x+1}}}{x}$,則f(x)•g(x)=x,x∈(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.將一顆骰子(它的六個面分別標(biāo)有點數(shù)1,2,3,4,5,6)先后拋擲兩次,觀察向上的點數(shù),求:
(1)兩數(shù)之積是6的倍數(shù)的概率;
(2)設(shè)第一次,第二次拋擲向上的點數(shù)分別為x、y,則logx2y=1的概率是多少;
(3)以第一次向上的點數(shù)為橫坐標(biāo)x,第二次向上的點數(shù)為縱坐標(biāo)y的點(x,y)在直線x-y=3的下方區(qū)域的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.△ABC中,角A、B、C的對應(yīng)邊分別為a、b、c,且滿足2asin(C+$\frac{π}{6}$)=b:
(1)求A的值:
(2)若b+2c=2,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=(-2,0).點O是坐標(biāo)原點.
(1)設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,若四邊形OACB是平行四邊形,求點C的坐標(biāo);
(2)若$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$=0,求證$\overrightarrow{c}$⊥($\overrightarrow{a}$-$\overrightarrow$);
(3)求<$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{a}$>的值;
(4)若$\overrightarrow{c}$$⊥\overrightarrow$($\overrightarrow{c}$≠$\overrightarrow{0}$),當(dāng)t∈[-$\sqrt{3}$,2]時,求|$\overrightarrow{a}$-t$\frac{\overrightarrow{c}}{|\overrightarrow{c}|}$|的取值范圍;
(5)若|$\overrightarrow{c}$|=|$\overrightarrow{a}$|,求($\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$)•$\overrightarrow{c}$的最大值及<$\overrightarrow{c}$-$\frac{\overrightarrow}{2}$,$\overrightarrow{c}$>的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,在四棱錐S-ABCD中,底面ABCD為矩形,SD⊥底面ABCD,AD=$\sqrt{2}$,DC=SD=2,點M在側(cè)棱SC上,∠ABM=60°.若以DA,DC,DS,分別為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系D-xyz,則M的坐標(biāo)為(0,1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知一條直線與一個平面內(nèi)的兩條直線垂直.則該直線與這個平面的位置關(guān)系為( 。
A.平行B.相交C.在平面內(nèi)D.都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知空間四邊形ABCD,E、H分別是邊AB、AD的中點,F(xiàn)、G分別是邊BC、CD上的點,且$\frac{CF}{CB}$=$\frac{CG}{CD}$=$\frac{3}{5}$,求證直線EF、GH、AC交于一點.

查看答案和解析>>

同步練習(xí)冊答案