已知集合A={x|x2-3x+2≤0},B={x|x2-(a+1)x+a≤0}.若A是B的子集,則a的取值范圍是________.

[2,+∞)
分析:解一元二次不等式求得A和B,再根據(jù)A是B的子集,求得a的取值范圍.
解答:∵集合A={x|x2-3x+2≤0}={x|1≤x≤2 },B={x|x2-(a+1)x+a≤0}={x|(x-1)(x-a)≤0 },A是B的子集,
∴a≥2,故a的取值范圍是[2,+∞),
故答案為[2,+∞).
點(diǎn)評(píng):本題主要考查集合關(guān)系中參數(shù)的取值范圍問(wèn)題,集合間的包含關(guān)系,一元二次不等式的解法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

3、已知集合A={x|x>1},集合B={x|x-4≤0},則A∪B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x<1},B={x|x(x-2)≤0},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x<-2或3<x≤4},B={x||x-1|≤4}
求:
(1)CRA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x≥1},B={x|x>2},則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•德陽(yáng)三模)已知集合A={x|
x-2
x+1
≤0},B={y|y=cosx,x∈R}
.則A∩B為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案