請(qǐng)分別畫圖說明兩條異面直線在同一個(gè)平面上的正投影可能是:
(1)兩條相交直線;
(2)兩條平行直線;
(3)一條直線和直線外一點(diǎn).
考點(diǎn):平行投影及平行投影作圖法
專題:操作型,空間位置關(guān)系與距離
分析:利用正方體模型,即可得出結(jié)論.
解答: 解:如圖所示,
(1)A1C與AB1是異面直線,正投影AC與AB是兩條相交直線;
(2)AD1與B1C1是異面直線,正投影AD與BC是兩條平行直線;
(3)B1D1與CC1是異面直線,正投影是BD與點(diǎn)C.
點(diǎn)評(píng):本題考查平行投影及平行投影作圖法,正確運(yùn)用正方體是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C的㈱對(duì)邊分別為a,b,c,且滿足2acosC=2b+c.
(1)求角A;
(2)若sinBsinC=
1
4
,且b=4,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
sin(x-
π
12
),x∈R
(Ⅰ)直接寫出f(x)的最大值及對(duì)應(yīng)的x的集合;
(Ⅱ)若sinθ=-
4
5
,θ∈(
2
,2π),求f(2θ+
π
3
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的方程:x2+ax+
1
4
(a2+3)=x2+x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用判別式求函數(shù)y=
x
x2-3x+1
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E的中心在坐標(biāo)原點(diǎn)、對(duì)稱軸為坐標(biāo)軸,且拋物線x2=-4
2
y的焦點(diǎn)是它的一個(gè)焦點(diǎn),又點(diǎn)A(1,
2
)在該橢圓上.
(1)求橢圓E的方程;
(2)若斜率為
2
直線l與橢圓E交于不同的兩點(diǎn)B、C,當(dāng)△ABC的面積為
2
時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)的二次項(xiàng)的系數(shù)為a,不等式f(x)>-2x的解集為(1,3)
(Ⅰ)若函數(shù)y=f(x)+6a有且只有一個(gè)零點(diǎn),求f(x)的解析式;
(Ⅱ)記f(x)的最大值為g(a),求g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下表是某廠1~4月份用水量(單位:百噸)的一組數(shù)據(jù):
月份x1234
用水量y4.5432.5
由其散點(diǎn)圖可知,用水量y與月份x之間有較好的線性相關(guān)關(guān)系,計(jì)算得線性回歸方程是y=5.25-0.7x,則預(yù)測(cè)五月份用水量為
 
百噸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

大小相同的4個(gè)小球上分別寫有數(shù)字1,2,3,4,從這4個(gè)小球中隨機(jī)抽取2個(gè)小球,則取出的2個(gè)小球上的數(shù)字之和為奇數(shù)的概率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案