【題目】函數(shù)在處的切線與直線平行.
(1)求實數(shù);
(2)求函數(shù)的單調(diào)區(qū)間;
(3)設,當時, 恒成立,求整數(shù)的最大值.
【答案】(1) (2) 單調(diào)遞增區(qū)間為 (3)3
【解析】試題分析:(1)先求導,根據(jù)導數(shù)的幾何意義即可求出a的值;
(2)利用導數(shù)研究單調(diào)性,即可得出函數(shù)的單調(diào)區(qū)間;
(3)x>1時,g(x)>k(x-1)恒成立,轉化為,在(1,+∞)恒成立,構造函數(shù)h(x)=,,x∈(1,+∞),利用導數(shù)和不可解零點返代即可求出,所以,因為,所以整數(shù)值的最大值即為得解.
試題解析:
(1)設在處切線斜率為,由題意知: .
又,
∴,∴, .
(2)由(1)知
,
.
當, , 單調(diào)遞增,
當, , 單調(diào)遞減,
當, , 單調(diào)遞增,
當,, 單調(diào)遞減,
綜上,函數(shù)的單調(diào)遞增區(qū)間為.單調(diào)減區(qū)間為;
(3), ,即,
令,,
記, , 在單調(diào)遞增,
而, ,
故必有,有,且,
所以當, , ,
在單調(diào)遞減,在單調(diào)遞減,
,
,因為,所以整數(shù)值的最大值為3.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,直線不過原點且不平行于坐標軸,與交于、兩點,線段的中點為.
(1)證明:直線的斜率與的斜率的乘積為定值;
(2)若過點,延長線段與交于點,四邊形能否為平行四邊形?若能,求出的方程;若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題,;命題:關于的方程有兩個不同的實數(shù)根.
(1)若為真命題,求實數(shù)的取值范圍;
若為真命題,為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體中,平面,垂足為H,給出下面結論:
①直線與該正方體各棱所成角相等;
②直線與該正方體各面所成角相等;
③過直線的平面截該正方體所得截面為平行四邊形;
④垂直于直線的平面截該正方體,所得截面可能為五邊形,
其中正確結論的序號為( )
A. ①③ B. ②④ C. ①②④ D. ①②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在和處的切線相互平行,求的值;
(2)試討論的單調(diào)性;
(3)設,對任意的,均存在,使得.試求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數(shù)據(jù)如下:
零件的個數(shù)(個) | ||||
加工的時間(小時) |
(1)在給定的坐標系中畫出表中數(shù)據(jù)的散點圖;
(2)求出關于的線性回歸方程.
(3)試預測加工個零件需要多少時間?
附錄:參考公式: ,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知極坐標系的極點為直角坐標系xOy的原點,極軸為x軸的正半軸,兩種坐標系中的長度單位相同直線的極坐標方程為,曲線C的參數(shù)方程為為參數(shù),設直線l與曲線C交于A,B兩點.
寫出直線的普通方程與曲線C的直角坐標方程;
已知點P在曲線C上運動,求點P到直線距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:的焦距為2,左右焦點分別為,,以原點O為圓心,以橢圓C的半短軸長為半徑的圓與直線相切.
Ⅰ求橢圓C的方程;
Ⅱ設不過原點的直線l:與橢圓C交于A,B兩點.
若直線與的斜率分別為,,且,求證:直線l過定點,并求出該定點的坐標;
若直線l的斜率是直線OA,OB斜率的等比中項,求面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com