已知i為虛數(shù)單位,復(fù)數(shù)z=i+i2+i3+…+i2011,則復(fù)數(shù)z的模為( )
A.
B.
C.1
D.0
【答案】分析:根據(jù)所給的復(fù)數(shù)的形式,看出復(fù)數(shù)式中每四項(xiàng)之和等于0,則用2011除以4看出余數(shù)是3,在復(fù)數(shù)等于前三項(xiàng)之和,得到結(jié)果.
解答:解:∵i+i2+i3+i4=i-1-i+1=0
∴復(fù)數(shù)z=i+i2+i3+…+i2011=i+i2+i3=-1,
∴復(fù)數(shù)z的模為1,
故選C
點(diǎn)評(píng):本題看出復(fù)數(shù)求模和復(fù)數(shù)的單位的乘方的意義,本題解題的關(guān)鍵是看出這些數(shù)字的和具有周期性,看出周期得到結(jié)果.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5、已知i為虛數(shù)單位,a為實(shí)數(shù),復(fù)數(shù)z=(a-2i)(1+i)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為M,則“a=1”是“點(diǎn)M在第四象限”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i為虛數(shù)單位,a為實(shí)數(shù),復(fù)數(shù)z=(1-2i)(a+i)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為M,則a>
1
2
“”是“點(diǎn)M在第四象限”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i為虛數(shù)單位,復(fù)數(shù)z=
1+2i
1-i
,則復(fù)數(shù)z在復(fù)平面上的對(duì)應(yīng)點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i為虛數(shù)單位,則
i
1+i
所對(duì)應(yīng)的點(diǎn)位于復(fù)平面內(nèi)點(diǎn)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i為虛數(shù)單位,復(fù)數(shù)z=
1-3i
2+i
,則復(fù)數(shù)z在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)位于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案