求數(shù)列的通項公式.

答案:
解析:

解法一:通過觀察與分析,不難寫出其三個分數(shù)中分母515,35,的一個通項公式10·2n15.

故所求數(shù)列的通項公式為

An=.

解法二:設An=,

則有

解得A=5,B=5,C=5.

所求通項公式為

An=

解法三:設An=,

則有

方程組有無窮多組解,如令A=5,B=0,可得An=.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文)已知數(shù)列{an}的相鄰兩項an,an+1是關于x的方程x2-2nx+bn=0(n∈N*)的兩根,且a1=1.
(1)求數(shù)列和{bn}的通項公式;  
(2)設Sn是數(shù)列{an}的前n項和,問是否存在常數(shù)λ,使得bn-λSn>0對任意n∈N*都成立,若存在,求出λ的取值范圍; 若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)順次為一次函數(shù)y=
1
4
x+
1
12
圖象上的點,點列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N)順次為x軸正半軸上的點,其中x1=a(0<a<1),對于任意n∈N,點An、Bn、An+1構成一個頂角的頂點為Bn的等腰三角形.
(1)求數(shù)列{yn}2的通項公式,并證明{yn}3是等差數(shù)列;
(2)證明xn+2-xn5為常數(shù),并求出數(shù)列{xn}6的通項公式;
(3)問上述等腰三角形An8Bn9An+110中,是否存在直角三角形?若有,求出此時a值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}、{bn}滿足a1=2,b1=1,且
an=
1
3
an-1+
2
3
bn-1+
1
2
bn=
2
3
an-1+
1
3
bn-1+
1
2
.
(n≥2)

(1)令cn=an+bn,求數(shù)列{cn}的通項公式;
(2)求數(shù)列{an-bn}的通項公式;
(3)求數(shù)列{an}的通項公式及前n項和公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△AnBnCn的三邊長分別為an,bn,cn,面積為f(n),已知a1=4,b1=5,c1=3,an+1=anbn+1=
an+cn
2
,cn+1=
an+bn
2
(n∈N*)

(Ⅰ)求數(shù)列{bn-cn}的通項公式;
(Ⅱ)求證:無論n取何正整數(shù),bn+cn恒為定值;
(Ⅲ)判斷函數(shù)f(n)(n∈N*)的單調性,并加以說明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•徐州一模)已知a>0,b<0,且a+b≠0,令a1=a,b1=b,且對任意的正整數(shù)k,當ak+bk≥0時,ak+1=
1
2
ak-
1
4
bk
bk+1=
3
4
bk
;當ak+bk<0時,bk+1=-
1
4
ak+
1
2
bk
,ak+1=
3
4
ak

(1)求數(shù)列{an+bn}的通項公式;
(2)若對任意的正整數(shù)n,an+bn<0恒成立,問是否存在a,b使得{bn}為等比數(shù)列?若存在,求出a,b滿足的條件;若不存在,說明理由;
(3)若對任意的正整數(shù)n,an+bn<0,且b2n=
3
4
b2n+1
,求數(shù)列{bn}的通項公式.

查看答案和解析>>

同步練習冊答案