設(shè)α,β為兩個(gè)不重合的平面,m,n為兩條不重合的直線,給出下列四個(gè)命題:
①若m⊥n,m⊥α,n?α則n∥α;
②若α⊥β,α∩β=m,n?α,n⊥m則n⊥β;
③若m⊥n,m∥α,n∥β,則α⊥β;
④若n?α,m?β,α與β相交且不垂直,則n與m不垂直.
其中,所有真命題的序號(hào)是_______.( 。
分析:①由直線平行于平面的判定定理進(jìn)行判斷;②由平面與平面垂直的性質(zhì)定理進(jìn)行判斷;③若m⊥n,m∥α,n∥β,則α與β相交或平行;④若n?α,m?β,α與β相交且不垂直,則n與m有可能垂直.
解答:解:由α,β為兩個(gè)不重合的平面,m,n為兩條不重合的直線,知:
①若m⊥n,m⊥α,n?α,則由直線平行于平面的判定定理知n∥α,故①正確;
②若α⊥β,α∩β=m,n?α,n⊥m,則由平面與平面垂直的性質(zhì)定理知n⊥β,故②正確;
③若m⊥n,m∥α,n∥β,則α與β相交或平行,故③不正確;
④若n?α,m?β,α與β相交且不垂直,則n與m有可能垂直,故④不正確.
故選B.
點(diǎn)評(píng):本題考查命題的真假判斷與應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

6、設(shè)a,b為兩個(gè)不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若a∥b,l⊥a,則l⊥b;②若m⊥a,n⊥a,m∥b,n∥b,則a∥b;③若l∥a,l⊥b,則a⊥b;④若m、n是異面直線,m∥a,n∥a,且l⊥m,l⊥n,則l⊥a.
其中真命題的序號(hào)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省高一下學(xué)期期末考試數(shù)學(xué)卷 題型:填空題

設(shè)ab為兩個(gè)不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:

①若ab,lÌa,則lb;

②若mÌa,nÌambnb,則ab; 

③若lalb,則ab;

④若mn是異面直線,ma,na,且lm,ln,則la.

其中真命題的序號(hào)是____★____

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:南京模擬 題型:單選題

設(shè)a,b為兩個(gè)不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若ab,l⊥a,則l⊥b;②若m⊥a,n⊥a,mb,nb,則ab;③若la,l⊥b,則a⊥b;④若m、n是異面直線,ma,na,且l⊥m,l⊥n,則l⊥a.
其中真命題的序號(hào)是(  )
A.①③④B.①②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都市石室中學(xué)高三(上)9月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)a,b為兩個(gè)不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若a∥b,l⊥a,則l⊥b;②若m⊥a,n⊥a,m∥b,n∥b,則a∥b;③若l∥a,l⊥b,則a⊥b;④若m、n是異面直線,m∥a,n∥a,且l⊥m,l⊥n,則l⊥a.
其中真命題的序號(hào)是( )
A.①③④
B.①②③
C.①③
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年江蘇省南京市高三3月調(diào)研數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)a,b為兩個(gè)不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若a∥b,l⊥a,則l⊥b;②若m⊥a,n⊥a,m∥b,n∥b,則a∥b;③若l∥a,l⊥b,則a⊥b;④若m、n是異面直線,m∥a,n∥a,且l⊥m,l⊥n,則l⊥a.
其中真命題的序號(hào)是( )
A.①③④
B.①②③
C.①③
D.②④

查看答案和解析>>

同步練習(xí)冊(cè)答案