20.現(xiàn)有4名學(xué)生,去參加5個(gè)不同的課外小組,問:
(1)每名學(xué)生只參加一個(gè)興趣小組的分法有多少種?
(2)每名學(xué)生只參加-個(gè)興趣小組,而且每個(gè)小組至多有一名學(xué)生參加的分法有多少種?

分析 (1)每一名學(xué)生都有5中不同的參加的方法,問題得以解決;
(2)從5個(gè)不同的課外小組任選4個(gè),分給4名同學(xué)即可.

解答 解:(1)每一名學(xué)生都有5中不同的參加的方法,故有54=625種,
(2)從5個(gè)不同的課外小組任選4個(gè),故有A54=120種.

點(diǎn)評(píng) 本題考查了分步計(jì)數(shù)原理,關(guān)鍵是如何分步,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知直線l的斜率k=2,并且經(jīng)過一點(diǎn)(2,-3)則直線的點(diǎn)斜式方程為( 。
A.y-3=2(x-2)B.y+3=2(x-2)C.y-2=k(x+3)D.y-2=2(x-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若tanα=2,則1+sinαcosα=$\frac{7}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知直線y=x+b(b>0)上存在唯一一點(diǎn)A,滿足點(diǎn)A到兩點(diǎn)F1(-1,0),F(xiàn)2(1,0)的距離之和等于2$\sqrt{2}$,則b=$\sqrt{3}$,點(diǎn)A的坐標(biāo)為($-\frac{2\sqrt{3}}{3},\frac{\sqrt{3}}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.a(chǎn)1=1,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$,an=$\frac{1}{2n-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.利用正弦線比較sin1,sin1.2,sin1.5的大小關(guān)系是( 。
A.sin1>sin1.2>sin1.5B.sin1>sin1.5>sin1.2
C.sin1.5>sin1.2>sin1D.sin1.2>sin1>sin1.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若sinθ•cosθ<0,|cosθ|=cosθ,則點(diǎn)P(tanθ,cosθ)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)且y=f(x)的最大值為2,其圖象相鄰兩對(duì)稱軸的距離為3,并過點(diǎn)(1,2),求y=f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在Rt△ABC中,AB⊥AC,則有AB2+AC2=BC2成立.拓展到空間,在直四面體P-ABC中,PA⊥PB、PB⊥PC、PC⊥PA.類比平面幾何的勾股定理,在直四面體P-ABC中可得到相應(yīng)的結(jié)論是$S_{△ABC}^2=S_{△PAB}^2+S_{△PBC}^2+S_{△PCA}^2$.

查看答案和解析>>

同步練習(xí)冊(cè)答案