精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓C: + =1(a>b>0)的左、右焦點分別為F1、F2 , 點M(0,2)關于直線y=﹣x的對稱點在橢圓C上,且△MF1F2為正三角形.
(1)求橢圓C的方程;
(2)垂直于x軸的直線與橢圓C交于A,B兩點,過點P(4,0)的直線PB交橢圓C于另一點E,證明:直線AE與x軸相交于定點.

【答案】
(1)解:如圖,點M(0,2)關于直線y=﹣x的對稱點為(﹣2,0),

∵(﹣2,0)在橢圓上,∴a=2,

又△MF1F2為正三角形,

∴tan30°= ,c=2tan30°= ,

∴b2=a2﹣c2=4﹣ = ,

∴橢圓C的方程 + =1;


(2)解:∵P(4,0),

∴直線PB的方程可設為x=ky+4,

,

得(2k2+3)y2+16ky+24=0,

∵△>0,

∴k2

設B(x1,y1),E(x2,y2),則A(x1,﹣y1),

∴y1+y2=﹣ ,y1y2=

直線AE:y+y1= (x﹣x1),

∵x1y2+x2y1=2ky1y2+4(y1+y2)= =﹣ =y1+y2,

∴直線AE:y+y1= (x﹣x1),即為y= (x﹣1)恒過定點(1,0).

∴AE恒過定點(1,0).


【解析】(1)由題意畫出圖形,求出M點關于直線y=﹣x的對稱點,則a可求,再由△MF1F2為正三角形列式求得c,結合隱含條件求得b,則橢圓方程可求,(2)設直線PB的方程可設為x=ky+4,聯立方程組,設B(x1 , y1),E(x2 , y2),則A(x1 , ﹣y1),根據韋達定理可得y1+y2=﹣ ,y1y2= ,由此能夠證明直線AE恒過定點(1,0).
【考點精析】本題主要考查了橢圓的標準方程的相關知識點,需要掌握橢圓標準方程焦點在x軸:,焦點在y軸:才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知點F1 , F2分別是雙曲線 的左、右焦點,過F1且垂直于x軸的直線與雙曲線交于A,B兩點,若△ABF2是銳角三角形,則該雙曲線離心率的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數y=f(x)是R上的偶函數,且當x≤0時,f(x)=log (1﹣x)+x.
(1)求f(1)的值;
(2)求函數y=f(x)的表達式,并直接寫出其單調區(qū)間(不需要證明);
(3)若f(lga)+2<0,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點P(0,2)和圓C:x2+y2﹣8x+11=0.
(1)求過點P,點C和原點三點圓的方程;
(2)求以點P為圓心且與圓C外切的圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知y=f(x)是定義在R上的奇函數,當x≥0時,f(x)=x+x2
(1)求x<0時,f(x)的解析式;
(2)問是否存在這樣的非負數a,b,當x∈[a,b]時,f(x)的值域為[4a﹣2,6b﹣6]?若存在,求出所有的a,b值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,若存在x1 , x2∈R,x1≠x2 , 使f(x1)=f(x2)成立,則實數a的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a、b、c分別是△ABC的三個內角A、B、C的對邊.
(1)若△ABC面積SABC= ,c=2,A=60°,求a、b的值;
(2)若a=ccosB,且b=csinA,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】△ABC中,D為邊BC上的一點,BD=33,sinB= ,cos∠ADC= ,求AD.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在棱長為a的正方體ABCD﹣A1B1C1D1中,P為A1D1的中點,Q為A1B1上任意一點,E、F為CD上兩點,且EF的長為定值,則下面四個值中不是定值的是(
A.點P到平面QEF的距離
B.直線PQ與平面PEF所成的角
C.三棱錐P﹣QEF的體積
D.△QEF的面積

查看答案和解析>>

同步練習冊答案