設(shè)F是雙曲線
x2
a2
-
y2
b2
=1
的右焦點,雙曲線兩條漸近線分別為l1,l2,過F作直線l1的垂線,分別交l1,l2于A、B兩點.若OA,AB,OB成等差數(shù)列,且向量
BF
FA
同向,則雙曲線離心率e的大小為______.
不妨設(shè)OA的傾斜角為銳角
∵向量
BF
FA
同向,,
∴漸近線l1的傾斜角為(0,
π
4
),
∴漸近線l1斜率為:k=
b
a
<1,∴
b2
a2
=
c2-a2
a2
=e2-1<1
,∴1<e2<2
∴|AB|2=(|OB|-|OA|)(|OB|+|OA|)=(|OB|-|OA|)2|AB|,
∴|AB|=2(|OB|-|OA|)
∴|OB|-|OA|=
1
2
|AB|
∵|OA|,|AB|,|OB|成等差數(shù)列
∴|OA|+|OB|=2|AB|
∴|OA|=
3
4
|AB|
∴在直角△OAB中,tan∠AOB=
4
3

由對稱性可知:OA的斜率為k=tan(
π
2
-
1
2
∠AOB)
2k
1-k2
=
4
3
,∴2k2+3k-2=0,∴k=
1
2
(k=-2舍去);
b
a
=
1
2
,∴
b2
a2
=
c2-a2
a2
=e2-1=
1
4

∴e2=
5
4

∴e=
5
2

故答案為
5
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F是雙曲線
x2
a2
-
y2
b2
=1
的右焦點,雙曲線兩條漸近線分別為l1,l2,過F作直線l1的垂線,分別交l1,l2于A、B兩點.若OA,AB,OB成等差數(shù)列,且向量
BF
FA
同向,則雙曲線離心率e的大小為
5
2
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點,雙曲線兩條漸近線分別為l1,l2,過F作直線l1的垂線,分別交l1,l2于A、B兩點,且向量
BF
FA
同向.若|OA|,|AB|,|OB|成等差數(shù)列,則雙曲線離心率e的大小為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點,直線y=
3
x
交雙曲線左右兩支于M,N,若|OM|=|OF|,則雙曲線的離心率等于
3
+1
3
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•嘉興二模)設(shè)F是雙曲線
x2
a2
-
y2
b2
=1(a,b>0)
的左焦點,C是其右頂點,過F作x軸的垂線與雙曲線交于A、B兩點,若△ABC是鈍角三角形,則該雙曲線離心率的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊答案