【題目】某公司要在一條筆直的道路邊安裝路燈,要求燈柱AB與底面垂直,燈桿BC與燈柱AB所在的平面與道路走向垂直,路燈C采用錐形燈罩,射出的管線與平面ABC部分截面如圖中陰影所示,路寬AD=24米,設(shè)

(1)求燈柱AB的高h(用表示);

(2)此公司應(yīng)該如何設(shè)置的值才能使制作路燈燈柱AB和燈桿BC所用材料的總長(zhǎng)度最?最小值為多少?

【答案】(1);(2)時(shí),所用材料的總長(zhǎng)度最小,最小值為.

【解析】

(1)分別在△ABC△ACD中,利用正弦定理即可解出答案;

(2)△ABC中,利用正弦定理求出BC,再利用(1)的結(jié)果和三角函數(shù)的和差公式即可求得答案.

(1)由題意可得∠ADC=CADACD =,∠BCA=

△ACD中,由正弦定理可得:

AC=,

△ABC中,由正弦定理可得:

AB=

.

即得.

(2)(1)AC=,AB=,

△ABC中,由正弦定理可得:,

所以.

可得,可得當(dāng),即時(shí),

即當(dāng)公司設(shè)置的值為時(shí),燈柱AB和燈桿BC所用材料的總長(zhǎng)度最小,最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,且點(diǎn)在橢圓上.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)點(diǎn)在橢圓的圖像上運(yùn)動(dòng)時(shí),點(diǎn)在曲線上運(yùn)動(dòng),求曲線的軌跡方程,并指出該曲線是什么圖形;

3)過橢圓上異于其頂點(diǎn)的任意一點(diǎn)作曲線的兩條切線,切點(diǎn)分別為不在坐標(biāo)軸上),若直線軸,軸上的截距分別為試問:是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知橢圓的左、右焦點(diǎn)分別為,,點(diǎn)是橢圓的一個(gè)頂點(diǎn),是等腰直角三角形.

1)求橢圓的方程;

2)設(shè)點(diǎn)是橢圓上一動(dòng)點(diǎn),求線段的中點(diǎn)的軌跡方程;

3)過點(diǎn)分別作直線,交橢圓于,兩點(diǎn),設(shè)兩直線的斜率分別為,,

,探究:直線是否過定點(diǎn),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的離心率為,短軸長(zhǎng)為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若直線與橢圓交于不同的兩點(diǎn),且線段的垂直平分線過定點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的離心率為,短軸長(zhǎng)為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若直線與橢圓交于不同的兩點(diǎn),且線段的垂直平分線過定點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別是,是橢圓外的動(dòng)點(diǎn),滿足.點(diǎn)是線段與該橢圓的交點(diǎn),點(diǎn)在線段上,并且滿足,.

(1)當(dāng)時(shí),用點(diǎn)P的橫坐標(biāo)表示;

(2)求點(diǎn)的軌跡的方程;

(3)在點(diǎn)的軌跡上,是否存在點(diǎn),使的面積?若存在,求出的正切值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B是海岸線OMON上兩個(gè)碼頭,海中小島有碼頭Q到海岸線OM、ON的距離分別為、,測(cè)得,,以點(diǎn)O為坐標(biāo)原點(diǎn),射線OMx軸的正半軸,建立如圖所示的直角坐標(biāo)系,一艘游輪以小時(shí)的平均速度在水上旅游線AB航行(將航線AB看作直線,碼頭Q在第一象限,航線BB經(jīng)過點(diǎn)Q.

1)問游輪自碼頭A沿方向開往碼頭B共需多少分鐘?

2)海中有一處景點(diǎn)P(設(shè)點(diǎn)P平面內(nèi),,且),游輪無法靠近,求游輪在水上旅游線AB航行時(shí)離景點(diǎn)P最近的點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若函數(shù)f(x)處取得極大值,則實(shí)數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知焦點(diǎn)在x軸上的雙曲線C的兩條漸近線過坐標(biāo)原點(diǎn),且兩條漸近線與以點(diǎn)為圓心,1為半徑的圓相切,又知C的一個(gè)焦點(diǎn)與P關(guān)于直線對(duì)稱.

1)求雙曲線C的方程;

2)設(shè)直線與雙曲線C的左支交于A、B兩點(diǎn),另一直線經(jīng)過AB的中點(diǎn),求直線y軸上的截距b的取值范圍;

3)若Q是雙曲線C上的任一點(diǎn),為雙曲線C的左、右兩個(gè)焦點(diǎn),從的角平分線的垂線,垂足為N,試求點(diǎn)N的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案