精英家教網 > 高中數學 > 題目詳情
已知函數.
(1)若處取得極值,求的單調遞增區(qū)間;
(2)若在區(qū)間內有極大值和極小值,求實數的取值范圍.
(1);(2)實數的取值范圍是.

試題分析:(1)根據題意可得,又由的極值點可得,可得,從而,而的解為,因此可以得到的單調遞增區(qū)間為,;(2)由可知,在區(qū)間內有極大值和極小值等價于二次函數上有不等零點,
因此可以大致畫出的示意圖,從而可以列出關于的不等式組:,即可解得實數的取值范圍是.
試題解析:(1)∵,∴,
處取得極值,∴,即,
,令,則,∴,
∴函數的單調遞增區(qū)間為,
(2) ∵內有極大值和極小值 ∴內有兩不等零點,
而二次函數,其對稱軸,可結合題意畫出的大致示意圖:

,解得,∴實數的取值范圍是.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數為常數)的圖像與軸交于點,曲線在點處的切線斜率為-1.
(1)求的值及函數的極值;(2)證明:當時,;
(3)證明:對任意給定的正數,總存在,使得當,恒有.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)若是函數的極值點,求曲線在點處的切線方程;
(2)若函數上為單調增函數,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數:f(x)=x3+ax2+bx+c,過曲線y=f(x)上的點P(1,f(1))的切線方程為y=3x+1
(1)y=f(x)在x=-2時有極值,求f(x)的表達式;
(2)函數y=f(x)在區(qū)間[-2,1]上單調遞增,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若關于的不等式的解集中的正整數解有且只有3個,則實數的取值范圍是     

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

函數.
(1)討論的單調性;
(2)設,證明:.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知,則=             

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題


設曲線在點處的切線與垂直,則              .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

求函數的導數。

查看答案和解析>>

同步練習冊答案