若雙曲線C:2x2-y2=m(m>0)與拋物線y2=16x的準線交于A,B兩點,且|AB|=4
3
,則m的值是( 。
A、116B、80C、52D、20
分析:求出y2=16x的準線l:x=-4,由C與拋物線y2=16x的準線交于A,B兩點,且|AB|=4
3
,即可求出m的值.
解答:解:y2=16x的準線l:x=-4,
∵C與拋物線y2=16x的準線l:x=-4交于A,B兩點,|AB|=4
3
,
∴A(-4,2
3
),B(-4,-2
3
),
將A點坐標代入雙曲線方程得2(-4)2-(2
3
2=m,
∴m=20,
故選:D.
點評:本題考查雙曲線的性質(zhì)和應(yīng)用,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線l:y=kx+1與雙曲線C:2x2-y2=1的右支交于不同的兩點A、B.
(I)求實數(shù)k的取值范圍;
(II)是否存在實數(shù)k,使得以線段AB為直徑的圓經(jīng)過雙曲線C的右焦點F?若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:2x2-y2=2與點P(1,2)
(1)求過P(1,2)點的直線l的斜率取值范圍,使l與C分別有一個交點,兩個交點,沒有交點.
(2)若Q(1,1),試判斷以Q為中點的弦是否存在.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:y=kx+1與雙曲線C:2x2-y2=1交于不同的兩點A、B.
(1)求實數(shù)k的取值范圍;
(2)雙曲線C的右焦點F,是否存在實數(shù)k,使得以AF⊥BF?若存在,求出k的值.若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上海)在平面直角坐標系xOy中,已知雙曲線C:2x2-y2=1.
(1)設(shè)F是C的左焦點,M是C右支上一點,若|MF|=2
2
,求點M的坐標;
(2)過C的左焦點作C的兩條漸近線的平行線,求這兩組平行線圍成的平行四邊形的面積;
(3)設(shè)斜率為k(|k|<
2
)的直線l交C于P、Q兩點,若l與圓x2+y2=1相切,求證:OP⊥OQ.

查看答案和解析>>

同步練習(xí)冊答案