已知適合不等式|x2-4x+a|+|x-3|≤5的x的最大值為3,求實(shí)數(shù)a的值,并解該不等式.
【答案】分析:首先分析題目已知適合不等式|x2-4x+a|+|x-3|≤5的x的最大值為3,即可得到|x-3|=3-x.然后可以分類(lèi)討論x2-4x+a<0,x2-4x+a≥0的情況,去絕對(duì)值號(hào),求得解集即可得到答案.
解答:解:已知適合不等式|x2-4x+a|+|x-3|≤5的x的最大值為3,即x≤3,所以|x-3|=3-x.
(1)若x2-4x+a<0,則原不等式化為x2-3x+a+2≥0.
此不等式的解集不可能是集合{x|x≤3}的子集,所以x2-4x+a<0不成立.
(2)若x2-4x+a≥0,則原不等式化為x2-5x+a-2≤0.因?yàn)閤≤3,
令x2-5x+a-2=(x-3)(x-m)=x2-(m+3)x+3m,比較系數(shù),得m=2,所以a=8.
此時(shí),原不等式的解集為{x|2≤x≤3}
故答案為a=8,不等式解集為{x|2≤x≤3}.
點(diǎn)評(píng):此題主要考查絕對(duì)值不等式的應(yīng)用問(wèn)題,考查學(xué)生靈活求解能力,題中用到分類(lèi)討論思想,有一定的計(jì)算量屬于中檔題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

17、已知適合不等式|x2-4x+a|+|x-3|≤5的x的最大值為3,求實(shí)數(shù)a的值,并解該不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知適合不等式|x2-4x+p|+|x-3|≤5的x的最大值為3,求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知適合不等式|x2-4x+p|+|x-3|≤5的x的最大值為3,求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知適合不等式(x2-4xa)+| x-3|≤5的x的最大值為3,則a         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省天門(mén)市高三天5月模擬理科數(shù)學(xué)試題 題型:填空題

已知適合不等式(x2-4x+a)+| x-3|≤5的x的最大值為3,則a=    

 

查看答案和解析>>

同步練習(xí)冊(cè)答案