【題目】給出以下四個問題:①x,輸出它的絕對值.②求面積為6的正方形的周長.③求三個數(shù)a,b,c中最大數(shù).④求函數(shù)的函數(shù)值.其中不需要用條件語句來描述其算法的有 個.
【答案】1
【解析】解:對于①輸入一個正數(shù)x,輸出它的絕對值時,須對絕對值內(nèi)的值進行分類討論求解,需要用條件語句來描述其算法;
對于②,求面積為6的正方形的周長,代入a2求a后計算4a即可;
對于③,求三個數(shù)a,b,c中的最大數(shù),必須先進行大小比較,要用條件語句;
對于④,求函數(shù) 的函數(shù)值,必須對所給的x進行條件判斷,也要用條件語句.
其中不需要用條件語句來描述其算法的有1個.
所以答案是:1.
【考點精析】認(rèn)真審題,首先需要了解算法的條件語句(“條件”表示判斷的條件;“語句”表示滿足條件時執(zhí)行的操作內(nèi)容,條件不滿足時,結(jié)束程序;算機在執(zhí)行時首先對IF后的條件進行判斷,如果條件符合就執(zhí)行THEN后邊的語句,若條件不符合則直接結(jié)束該條件語句,轉(zhuǎn)而執(zhí)行其它語句).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 ,點P( )在橢圓上.
(1)求橢圓的離心率;
(2)設(shè)A為橢圓的左頂點,O為坐標(biāo)原點.若點Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2asinB= b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足:a1=1,an+1= ,(n∈N*),若bn+1=(n﹣λ)( +1),b1=﹣λ,且數(shù)列{bn}是單調(diào)遞增數(shù)列,則實數(shù)λ的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且cosAcosC﹣cos(A+C)=sin2B. (Ⅰ)證明:a,b,c成等比數(shù)列;
(Ⅱ)若角B的平分線BD交AC于點D,且b=6,S△BAD=2S△BCD , 求BD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某種算法的程序,回答下面的問題:
(1)寫出輸出值y關(guān)于輸入值x的函數(shù)關(guān)系式f (x);
(2)當(dāng)輸出的y值小于時,求輸入的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:(k﹣1)x﹣2y+5﹣3k=0(k∈R)恒過定點P,圓C經(jīng)過點A(4,0)和點P,且圓心在直線x﹣2y+1=0上.
(1)求定點P的坐標(biāo);
(2)求圓C的方程;
(3)已知點P為圓C直徑的一個端點,若另一個端點為點Q,問:在y軸上是否存在一點M(0,m),使得△PMQ為直角三角形,若存在,求出m的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)當(dāng)時,若存在使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,其左、右焦點分別為,點是坐標(biāo)平面內(nèi)一點,且, (為坐標(biāo)原點).
(1)求橢圓的方程;
(2)過點且斜率為的動直線交橢圓于兩點,在軸上是否存在定點,使以為直徑的圓恒過該點?若存在,求出點的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com