18.盒子中裝有大小相同的2個(gè)紅球和3個(gè)白球,從中摸出一個(gè)球然后放回袋中再摸出一個(gè)球,則兩次摸出的球顏色相同的概率是$\frac{13}{25}$.

分析 由題意知本題是一個(gè)古典概型,用組合數(shù)表示出試驗(yàn)發(fā)生所包含的所有事件數(shù),滿(mǎn)足條件的事件分為兩種情況①先摸出紅球,再摸出紅球,②先摸出白球,再摸出白球,根據(jù)古典概型公式得到結(jié)果.

解答 解:由題意知本題是一個(gè)古典概型,
∵試驗(yàn)發(fā)生所包含的所有事件數(shù)是C51C51=25,
滿(mǎn)足條件的事件分為兩種情況
①先摸出紅球,P=C21,再摸出紅球,P紅紅=C21C21=4;
②先摸出白球,P=C31,再摸出白球,P白白=C31C31=9,
∴P=$\frac{4+9}{25}$=$\frac{13}{25}$.
故答案為:$\frac{13}{25}$

點(diǎn)評(píng) 古典概型要求能夠列舉出所有事件和發(fā)生事件的個(gè)數(shù),實(shí)際上本題可以列舉出所有事件,概率問(wèn)題同其他的知識(shí)點(diǎn)結(jié)合在一起,實(shí)際上是以概率問(wèn)題為載體,主要考查的是另一個(gè)知識(shí)點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列函數(shù)中,在區(qū)間(-∞,0)上是減函數(shù)的是( 。
A.y=2xB.y=${log}_{\frac{1}{2}}$xC.y=x-1D.y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.以下選項(xiàng)中判斷正確的是( 。
A.命題“若x2+y2=0,則x=y=0”的逆否命題為“若x,y全不為0,則x2+y2≠0”
B.若命題$p:?{x_0}∈R,{x_0}^2-{x_0}+1<0$,則?p:?x∉R,x2-x+1≥0
C.若命題“p或q”為真命題,則命題p和命題q均為真命題
D.“x>3”是“x>2”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若a∈{1,2},b∈{-2,-1,0,1,2},方程x2+ax+b=0的兩根均為實(shí)數(shù)的概率( 。
A.$\frac{3}{5}$B.$\frac{7}{10}$C.$\frac{1}{4}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)y=$\frac{\sqrt{x+1}}{x}$的定義域是( 。
A.[-1,+∞)B.[-1,0)C.(-1,+∞)D.{x|x≥-1,且x≠0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),點(diǎn)(1,$\frac{3}{2}$)在橢圓C上,且橢圓C的離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)過(guò)橢圓C的右焦點(diǎn)F的直線(xiàn)與橢圓C交于P、Q兩點(diǎn),A為橢圓C的右頂點(diǎn),直線(xiàn)PA,QA分別交直線(xiàn)l:x=4于M,N兩點(diǎn),求證:FM⊥FN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)y=2x+1,x∈{x∈Z|0≤x<3},則該函數(shù)的值域?yàn)椋ā 。?table class="qanwser">A.{y|1≤y<7}B.{y|1≤y≤7}C.{1,3,5,7}D.{1,3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)集合A={x|x2-4x+3≥0},B={x|2x-3≤0},則A∪B=( 。
A.(-∞,1]∪[3,+∞)B.[1,3]C.$[{\frac{3}{2},3}]$D.$({-∞,\frac{3}{2}}]∪[{3,+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在直三棱柱ABC-A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分別是A1C1,BC的中點(diǎn).
(1)證明:AB⊥平面BB1C1C;
(2)設(shè)P是BE的中點(diǎn),求三棱錐P-B1C1F的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案