【題目】如圖①,在五邊形中,,,,將沿折起到的位置,得到如圖②所示的四棱錐,為線段的中點(diǎn),且平面.

(1)求證:平面.

(2)若直線所成角的正切值為,求直線與平面所成角的正弦值.

【答案】(1)見證明;(2)

【解析】

1)取的中點(diǎn),連接,,又的中點(diǎn),得到四邊形為平行四邊形,從而應(yīng)用線面平行的判定定理證得結(jié)果.

2,可得為直線所成的角,可得,設(shè),則,取的中點(diǎn)O,連接PO,過OAB的平行線,可建立如圖所示的空間直角坐標(biāo)系O-xyz,設(shè)為平面PBD的法向量,則,利用,即可得出.

(1)證明:取的中點(diǎn),連接,.

的中點(diǎn),所以,.

,,所以,.

則四邊形為平行四邊形,所以.

因?yàn)?/span>平面,平面

所以平面.

(2)解:因?yàn)?/span>平面,,

所以平面,所以,.

,即的中點(diǎn),可得為等邊三角形,所以.

,所以,即.

因?yàn)?/span>平面,平面,,所以平面.

平面,所以平面平面.

因?yàn)?/span>,所以即為直線所成的角,

所以,所以.

設(shè),則,.

的中點(diǎn),連接,過于點(diǎn),則,,兩兩垂直.

為坐標(biāo)原點(diǎn),,,的方向?yàn)?/span>軸,軸,軸的正方向,建立空間直角坐標(biāo)系,如圖所示.

,,,所以.

所以,.

設(shè)平面的法向量為

,

,則.

因?yàn)?/span>.

所以直線與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

某位同學(xué)進(jìn)行寒假社會(huì)實(shí)踐活動(dòng),為了對(duì)白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進(jìn)行分析研究,他分別記錄了111日至115日的白天平均氣溫°C)與該奶茶店的這種飲料銷量(杯),得到如下數(shù)據(jù):


111

112

113

114

115

平均氣溫°C

9

10

12

11

8

銷量(杯)

23

25

30

26

21

1)若從這五組數(shù)據(jù)中隨機(jī)抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;

2)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出y關(guān)于x的線性回歸方程

(參考公式:.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年10月28日,重慶公交車墜江事件震驚全國,也引發(fā)了廣大群眾的思考——如何做一個(gè)文明的乘客.全國各地大部分社區(qū)組織居民學(xué)習(xí)了文明乘車規(guī)范.社區(qū)委員會(huì)針對(duì)居民的學(xué)習(xí)結(jié)果進(jìn)行了相關(guān)的問卷調(diào)查,并將得到的分?jǐn)?shù)整理成如圖所示的統(tǒng)計(jì)圖.

(Ⅰ)求得分在上的頻率;

(Ⅱ)求社區(qū)居民問卷調(diào)查的平均得分的估計(jì)值;(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)

(Ⅲ)以頻率估計(jì)概率,若在全部參與學(xué)習(xí)的居民中隨機(jī)抽取5人參加問卷調(diào)查,記得分在間的人數(shù)為,求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如上圖所示,在正方體中, 分別是棱的中點(diǎn), 的頂點(diǎn)在棱與棱上運(yùn)動(dòng),有以下四個(gè)命題:

A.平面 ; B.平面⊥平面

C 在底面上的射影圖形的面積為定值;

D 在側(cè)面上的射影圖形是三角形.其中正確命題的序號(hào)是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個(gè)結(jié)論:

①命題“”的否定是“,”;

②命題“若,則”的否定是“若,則”;

③命題“若,則”的否命題是“若,則”;

④若“是假命題,是真命題”,則命題,一真一假.

其中正確結(jié)論的個(gè)數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且過點(diǎn)P。

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知斜率為1的直線l過橢圓的右焦點(diǎn)F交橢圓于A.B兩點(diǎn),求弦AB的長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某旅游愛好者計(jì)劃從3個(gè)亞洲國家A1A2,A33個(gè)歐洲國家B1,B2,B3中選擇2個(gè)國家去旅游.

(1)若從這6個(gè)國家中任選2個(gè),求這2個(gè)國家都是亞洲國家的概率;

(2)若從亞洲國家和歐洲國家中各選1個(gè),求這兩個(gè)國家包括A1,但不包括B1的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)在拋物線的準(zhǔn)線上,且橢圓的短軸長為2,分別為橢圓的左,右焦點(diǎn),分別為橢圓的左,右頂點(diǎn),設(shè)點(diǎn)在第一象限,且軸,連接交橢圓于點(diǎn),直線的斜率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)若三角形的面積等于四邊形的面積,求的值;

(Ⅲ)設(shè)點(diǎn)的中點(diǎn),射線為原點(diǎn))與橢圓交于點(diǎn),滿足,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某公園內(nèi)有兩條道路,,現(xiàn)計(jì)劃在上選擇一點(diǎn),新建道路,并把所在的區(qū)域改造成綠化區(qū)域.已知

(1)若綠化區(qū)域的面積為1,求道路的長度;

(2)若綠化區(qū)域改造成本為10萬元/,新建道路成本為10萬元/.設(shè)),當(dāng)為何值時(shí),該計(jì)劃所需總費(fèi)用最?

查看答案和解析>>

同步練習(xí)冊(cè)答案