已知拋物線C:y2=x的焦點(diǎn)為F,A(x0,y0)是C上一點(diǎn),AF=|
5
4
x0|,則x0=( 。
A、1B、2C、4D、8
考點(diǎn):拋物線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:利用拋物線的定義、焦點(diǎn)弦長公式即可得出.
解答: 解:拋物線C:y2=x的焦點(diǎn)為F(
1
4
,0)

∵A(x0,y0)是C上一點(diǎn),AF=|
5
4
x0|,
5
4
x0
=x0+
1
4

解得x0=1.
故選:A.
點(diǎn)評(píng):本題考查了拋物線的定義、焦點(diǎn)弦長公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z1=3+i,z2=1-i,則復(fù)數(shù)z1+
1
z2
的虛部為(  )
A、2
B、2i
C、
3
2
D、
3
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某手機(jī)廠生產(chǎn)A,B,C三類手機(jī),每類手機(jī)均有黑色和白色兩種型號(hào),某月的產(chǎn)量如表(單位:部):
手機(jī)A手機(jī)B手機(jī)C
黑色100150400
白色300450600
(Ⅰ)用分層抽樣的方法在C類手機(jī)中抽取一個(gè)容量為5的樣本.將該樣本看成一個(gè)總體,從中任取2部,求至少有1部黑色手機(jī)的概率;
(Ⅱ)用隨機(jī)抽樣的方法從B類白色手機(jī)中抽取8部,經(jīng)檢測它們的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把這8部手機(jī)的得分看成一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過0.5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(1+x)-kx(k∈R)
(Ⅰ)若f(x)最大值為0,求k的值;
(Ⅱ)已知數(shù)列{an}滿足a1=1,an+1=ln(1+an)-
1
2
an

(i)求證:
n
i=1
ai
<2;(ii)是否存在n使得an∉(0,1],做不存在,請(qǐng)給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在幾何體ABCDE中,∠BAC=
π
2
,DC⊥平面ABC,EB⊥平面ABC,AB=AC=BE=2,CD=1.
(Ⅰ)設(shè)F為BC的中點(diǎn),求證:平面AFD⊥平面AFE;
(Ⅱ)設(shè)平面ABE與平面ACD的交線為直線l,求證:l∥平面BCDE;
(Ⅲ)求幾何體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司準(zhǔn)備進(jìn)行兩種組合投資,穩(wěn)健型組合投資是由每份金融投資20萬元,房地產(chǎn)投資30萬元組成;進(jìn)取型組合投資是由每份金融投資40萬元,房地產(chǎn)投資30萬元組成.已知每份穩(wěn)健型組合投資每年可獲利10萬元,每份進(jìn)取型組合投資每年可獲利15萬元.若可作投資用的資金中,金融投資不超過160萬元,房地產(chǎn)投資不超過180萬元,要使一年獲利總額最多,則穩(wěn)健型組合投資與進(jìn)取型組合,合投資分別注入的份數(shù)分別為(  )
A、x=4,y=2
B、x=3,y=3
C、x=5,y=1
D、x=5,y=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)=
|lg|x-1||,(x≠1)
0,(x=1)
,若關(guān)于x的方程[f(x)]2+bf(x)+c=0有7個(gè)不同的實(shí)根,則必有( 。
A、b<0且c=0
B、b>0且c<0
C、b<0且c>0
D、b≥0且c=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,cosA=
3
5

(1)求cos2
A
2
-sin(B+C)的值;
(2)如果△ABC的面積為4,AB=2,求BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx+x2,曲y=f(x)線在點(diǎn)(1,f(1))處的切線方程為( 。
A、y=3x
B、y=3x-2
C、y=2x-1
D、y=2x-3

查看答案和解析>>

同步練習(xí)冊(cè)答案