精英家教網 > 高中數學 > 題目詳情
13.過點P($\sqrt{3}$,1)的直線l與圓x2+y2=1有公共點,則直線l的傾斜角的取值范圍是[0,$\frac{π}{3}$].

分析 根據直線的斜率分兩種情況,直線l的斜率不存在時求出直線l的方程,即可判斷出答案;直線l的斜率存在時,由點斜式設出直線l的方程,根據直線和圓有公共點的條件:圓心到直線的距離小于或等于半徑,列出不等式求出斜率k的范圍,可得傾斜角的范圍.

解答 解:①當直線l的斜率不存在時,直線l的方程是x=$\sqrt{3}$,
此時直線l與圓相離,沒有公共點,不滿足題意;
②當直線l的斜率存在時,設直線l的方程為y-1=k(x-$\sqrt{3}$),
即 kx-y-$\sqrt{3}$k+1=0,
∵直線l和圓有公共點,
∴圓心到直線的距離小于或等于半徑,則$\frac{|-\sqrt{3}k+1|}{\sqrt{{k}^{2}+1}}$≤1,
解得0≤k≤$\sqrt{3}$,
∴直線l的傾斜角的取值范圍是[0,$\frac{π}{3}$],
故答案為[0,$\frac{π}{3}$].

點評 本題考查直線與圓的位置關系,直線的點斜式方程,點到直線的距離公式等,考查轉化思想,分類討論思想,以及化簡能力.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

3.已知一個圓柱的底面直徑和母線長都等于球的直徑,記圓柱的體積為V1,球的體積為V2,則$\frac{{V}_{1}}{{V}_{2}}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.有下列四個命題,
①若點P在橢圓$\frac{x^2}{9}+\frac{y^2}{5}$=1上,左焦點為F,則|PF|長的取值范圍為[1,5];
②方程x=$\sqrt{{y^2}+1}$表示雙曲線的一部分;
③過點(0,2)的直線l與拋物線y2=4x有且只有一個公共點,則這樣的直線l共有3條;
④函數f(x)=x3-2x2+1在(-1,2)上有最小值,也有最大值.
其中真命題的個數是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.已知函數f(x)=$\left\{\begin{array}{l}{(2a-1)x+4a,x<1}\\{1+lo{g}_{a}x,x≥1}\end{array}\right.$是R上的減函數,則實數a的取值范圍是( 。
A.[$\frac{1}{6}$,$\frac{1}{3}$)B.[$\frac{1}{3}$,$\frac{1}{2}$)C.($\frac{1}{3}$,$\frac{1}{2}$)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.已知函數f(x)=lg(x2+tx+2)(t為常數,且-2$\sqrt{2}$<t<2$\sqrt{2}$).
(1)當x∈[0,2]時,求函數f(x)的最小值(用t表示);
(2)是否存在不同的實數a,b,使得f(a)=lga,f(b)=lgb,并且a,b∈(0,2).若存在,求出實數t的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.2016年某招聘會上,有5個條件很類似的求職者,把他們記為A,B,C,D,E,他們應聘秘書工作,但只有2個秘書職位,因此5人中僅有2人被錄用,如果5個人被錄用的機會相等,分別計算下列事件的概率:
(1)C得到一個職位
(2)B或E得到一個職位.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.在△ABC中,a,b,c分別是內角A,B,C所對的邊,已知a=4,B=60°,C=75°,則b=(  )
A.2$\sqrt{5}$B.2$\sqrt{6}$C.2$\sqrt{3}$D.$\frac{11}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.設U={1,2,3,4,5},A={1,2,5},B={2,3,4},則B∩∁UA=(  )
A.B.{2}C.{3,4}D.{1,3,4,5}

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.設l,m,n是三條不同的直線,α,β是兩個不同的平面,下列命題中正確的是(  )
A.若l?β且m∥β,則l∥mB.若l⊥m且l⊥n,則m∥n
C.若m⊥n且m?α,n?β,則l∥αD.若m⊥α且m∥n,n∥β,則α⊥β

查看答案和解析>>

同步練習冊答案