已知橢圓,過焦點(diǎn)垂直于長軸的弦長為1,且焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成等邊三角形.

   (1)求橢圓的方程;

   (2)過點(diǎn)Q(-1,0)的直線交橢圓于A、B兩點(diǎn),交直線于點(diǎn)E,,求證:為定值.

 

 

 

 

 

 

 

【答案】

 解:(1)由條件得,

所以方程     …………4分

   (2)易知直線斜率存在,令

          

       …………6分

          …………8分

          …………10分

代入

            …………12分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆江西南昌八一、洪都、麻丘中學(xué)高二上期中數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)(理科)已知橢圓,過焦點(diǎn)且垂直于長軸的弦長為1,且焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成等邊三角形.

(1)求橢圓的方程;

(2)過點(diǎn)的直線交橢圓于兩點(diǎn),交直線于點(diǎn),且,,

求證:為定值,并計算出該定值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓,過焦點(diǎn)垂直于長軸的弦長為1,且焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成等邊三角形.

(1)求橢圓的方程;

(2)過點(diǎn)Q(-1,0)的直線l交橢圓于A,B兩點(diǎn),交直線x=-4于點(diǎn)E,點(diǎn)Q分 所成比為λ,點(diǎn)E分所成比為μ,求證λ+μ為定值,并計算出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓,過焦點(diǎn)垂直于長軸的弦長為1,且焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成等邊三角形.

   (1)求橢圓的方程;

   (2)過點(diǎn)Q(-1,0)的直線l交橢圓于A,B兩點(diǎn),交直線x=-4于點(diǎn)E,點(diǎn)Q分 所成比為λ,點(diǎn)E分所成比為μ,求證λ+μ為定值,并計算出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省南昌市八一中學(xué)、洪都中學(xué)、麻丘中學(xué)高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

(理科)已知橢圓,過焦點(diǎn)且垂直于長軸的弦長為1,且焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成等邊三角形.
(1)求橢圓的方程;
(2)過點(diǎn)Q(-1,0)的直線l交橢圓于A,B兩點(diǎn),交直線x=-4于點(diǎn)E,且,.求證:λ+μ為定值,并計算出該定值.

查看答案和解析>>

同步練習(xí)冊答案