【題目】已知橢圓與過原點(diǎn)的直線交于、兩點(diǎn),右焦點(diǎn)為,,若的面積為,則橢圓的焦距的取值范圍是( )

A. B. C. D.

【答案】B

【解析】分析:利用三角形的面積公式和橢圓的性質(zhì)得出a4,再根據(jù)三角形的面積公式得出當(dāng)A與短軸端點(diǎn)重合時(shí),c取得最小值,利用橢圓的性質(zhì)求出2c的最小值即可.

詳解: 取橢圓的左焦點(diǎn)F1,連接AF1,BF1,

則AB與FF1互相平分,

四邊形AFBF1是平行四邊形,

∴AF1=BF,

∵AF+AF1=2a,∴AF+BF=2a,

∵S△ABF=AFBFsin120°=AFBF=4,

∴AFBF=16,

∵2a=AF+BF≥2=8,∴a≥4,

又S△ABF==c|yA|=4

∴c=,

當(dāng)|yA|=b=時(shí),c取得最小值,此時(shí)b=c,

∴a2=3c2+c2=4c2,∴2c=a,

∴2c≥4.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,又有四個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是函數(shù)的零點(diǎn),.

(1)求實(shí)數(shù)的值;

(2)若不等式上恒成立,求實(shí)數(shù)的取值范圍;

(3)若方程有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】鄭一號(hào)宇宙飛船返回艙順利到達(dá)地球后,為了及時(shí)將航天員救出,地面指揮中心的在返回艙預(yù)計(jì)到達(dá)的區(qū)域安排了同一條直線上的三個(gè)救援中心(記為).當(dāng)返回艙距地面1萬米的點(diǎn)的時(shí)(假定以后垂直下落,并在點(diǎn)著陸),救援中心測(cè)得飛船位于其南偏東60°方向,仰角為60°,救援中心測(cè)得飛船位于其南偏西30°方向,仰角為30°,救援中心測(cè)得著陸點(diǎn)位于其正東方向.

1)求兩救援中心間的距離;

2救援中心與著陸點(diǎn)間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的方程為

1)當(dāng)時(shí),求直線與坐標(biāo)軸圍成的三角形的面積;

2)證明:不論取何值,直線恒過第四象限.

3)當(dāng)時(shí),求直線上的動(dòng)點(diǎn)到定點(diǎn)距離之和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016·威海模擬)三人參加某娛樂闖關(guān)節(jié)目,假設(shè)甲闖關(guān)成功的概率是,乙、丙兩人同時(shí)闖關(guān)成功的概率是,甲、丙兩人同時(shí)闖關(guān)失敗的概率是,且三人各自能否闖關(guān)成功相互獨(dú)立.

(1)求乙、丙兩人各自闖關(guān)成功的概率;

(2)設(shè)ξ表示三人中最終闖關(guān)成功的人數(shù),求ξ的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)三頂點(diǎn)坐標(biāo)分別是,

1)求ABC邊的距離d;

2)求證AB邊上任意一點(diǎn)P到直線AC,BC的距離之和等于d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象如圖,直線在原點(diǎn)處與函數(shù)圖象相切,且此切線與函數(shù)圖象所圍成的區(qū)域(陰影)面積為.

(1)求的解析式;

(2)若常數(shù),求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線Ca0),過點(diǎn)P(-2,-4)的直線l的參數(shù)方程為t為參數(shù)),lC分別交于M,N.

1)寫出C的平面直角坐標(biāo)系方程和l的普通方程;

2)若|PM||MN|,|PN|成等比數(shù)列,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案