4.已知向量$\overrightarrow a=(m,2)$,$\overrightarrow b=(-1,n)$,(n>0)且$\overrightarrow a•\overrightarrow b=0$,點P(m,n)在圓x2+y2=5上,則|2$\overrightarrow a+\overrightarrow b|$等于$\sqrt{34}$.

分析 根據(jù)條件即可得到關于m,n方程組,這樣由n>0便可解出m,n,從而得出向量的坐標,進而得出向量2$\overrightarrow{a}$+$\overrightarrow$的坐標,從而可求出向量的模.

解答 解:向量$\overrightarrow a=(m,2)$,$\overrightarrow b=(-1,n)$,(n>0)且$\overrightarrow a•\overrightarrow b=0$,
∴-m+2n=0,①
∴點P(m,n)在圓x2+y2=5上
∴m2+n2=5,②,
由①②可得m=2,n=1,
∴$\overrightarrow{a}$=(2,2)$\overrightarrow$=(-1,1),
∴2$\overrightarrow{a}$+$\overrightarrow$=(3,5),
∴|2$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{34}$,
故答案為:$\sqrt{34}$.

點評 考查向量數(shù)量積的坐標運算,曲線上點的坐標和曲線方程的關系,代入法解二元二次方程組,向量坐標的數(shù)乘和加法運算,根據(jù)向量坐標可求向量長度.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=2x2+alnx(a∈R).
(1)討論函數(shù)f(x)的單調性;
(2)若g(x)=f(x)-4x+2存在兩個極值點,且x0是函數(shù)g(x)的極小值點,求證:$g({x_0})>\frac{1}{2}-ln2$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知集合A={x|x2-4x-12<0},B={x|2x>log${\;}_{\sqrt{3}}$3},則A∩B等于( 。
A.($\frac{3}{2},6$)B.($\frac{3}{2},2$)C.(1,6)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在△ABC中,內角A,B,C的對邊分別是a,b,c,若bsinB-asinA=$\frac{3}{2}asinC$,且△ABC的面積為a2sinB,則cosB等于( 。
A.$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.某三棱錐的三視圖如圖所示,則該三棱錐的體積為( 。
A.$\frac{{64\sqrt{3}}}{3}$B.$\frac{{16\sqrt{3}}}{3}$C.$\frac{{32\sqrt{3}}}{3}$D.$\frac{32}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知等差數(shù)列{an}的前n項和為Sn,且a3=5,S15=225
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)記b=2${\;}^{{a}_{n}}$+2n,{bn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列函數(shù)中,在(0,2)上為增函數(shù)的是( 。
A.y=-3x+2B.y=$\frac{3}{x}$C.y=x2-4x+5D.y=3x2+8x-10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若x、y滿足約束條件$\left\{\begin{array}{l}y≤x+1\\ 5x+3y≤15\\ 2y≥1\end{array}\right.$,則z=x+y的最大值為( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知P為橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上的一個點,M,N分別為圓(x+3)2+y2=1和圓(x-3)2+y2=4上的點,則|PM|+|PN|的最小值為7.

查看答案和解析>>

同步練習冊答案