已知集合P={x|2≤x≤5},Q={x|k-1≤x≤2k-1},若P∩Q=∅,求實(shí)數(shù)k的取值范圍.
分析:直接利用P∩Q=∅,推出k的關(guān)系式,然后求解k的范圍.
解答:解:集合P={x|2≤x≤5},Q={x|k-1≤x≤2k-1},若P∩Q=∅,
所以k-1>5或2k-1<2,解得k>6或k
3
2
,
所以k的范圍是(-∞,
3
2
)∪(6,+∞).
點(diǎn)評(píng):本題考查集合交集的運(yùn)算,交集概念的理解,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•增城市模擬)已知集合P={x|2≤x<4},集合Q={x|3x-7≥8-2x},則P∩Q=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合P={x|2≤x≤7},Q={x|x2-x-6=0,x∈R},則集合P∩Q是
{3}
{3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合P={x|-2≤x≤5},Q={x|k+1≤x≤2k-1}滿足P∩Q=Q,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合P={x|-2≤x<3},Q={x|x2-3x-4>0},那么P∩Q等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合P={x|-2≤x≤10},Q={x|1-m≤x≤1+m}.
(1)求集合?RP;
(2)若P⊆Q,求實(shí)數(shù)m的取值范圍;
(3)若P∩Q=Q,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案