【題目】在△ABC中,角A、B、C所對的邊長分別為a、b、c,且acosB+bcosA=2ccosB.
(1)若a=3,,求c的值;
(2)若,求f(A)的取值范圍.
【答案】(1)c=1或c=2;(2).
【解析】
(1)已知條件由正弦定理化邊為角后,由兩角和的正弦公式和誘導(dǎo)公式求得主,再由余弦定理求得;
(2)由(1)可得的范圍,再把應(yīng)用二倍角公式和兩角和的正弦公式化為一個角一個三角函數(shù)形式,然后根據(jù)正弦函數(shù)性質(zhì)得結(jié)論.
(1)∵acosB+bcosA=2ccosB,
∴根據(jù)正弦定理得,sinAcosB+sinBcosA=2sinCcosB,
∴sin(A+B)=2sinCcosB,
∴sinC=2sinCcosB,
∵sinC≠0,
故cosB,
∵a=3,,
由余弦定理可得,,
∴c=1或c=2;
(2)∵
,
=sin(2A),
由(1)知,B,
∴,
∴,
∴,,
∴的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線C:y2=2px(p>0)的焦點是F,直線y=2與拋物線C的交點到F的距離等于2.
(1)求拋物線C的方程;
(2)過點(2,0)斜率為k的直線l交拋物線C于A、B兩點,O為坐標原點,直線AO與直線x=﹣2相交于點P,求證:BP∥x軸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的直角頂點在軸上,點為斜邊的中點,且平行于軸.
(Ⅰ)求點的軌跡方程;
(Ⅱ)設(shè)點的軌跡為曲線,直線與的另一個交點為.以為直徑的圓交軸于即此圓的圓心為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中已知橢圓過點,其左、右焦點分別為,離心率為.
(1)求橢圓E的方程;
(2)若A,B分別為橢圓E的左、右頂點,動點M滿足,且MA交橢圓E于點P.
(i)求證:為定值;
(ii)設(shè)PB與以PM為直徑的圓的另一交點為Q,問:直線MQ是否過定點,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在定義域內(nèi)有兩個不同的極值點.
(Ⅰ)求實數(shù)的取值范圍;
(Ⅱ)若有兩個不同的極值點,且,若不等式恒成立,求正實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,利用斜二側(cè)畫法得到水平放置的的直觀圖,其中軸,軸.若,設(shè)的面積為,的面積為,記,執(zhí)行如圖②的框圖,則輸出的值
A. 12B. 10C. 9D. 6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)若恒成立,求實數(shù)a的取值范圍;
(2)若關(guān)于x的方程有兩個不同的解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x),g(x)1.
(1)若f(a)=2,求實數(shù)a的值;
(2)判斷f(x)的單調(diào)性,并證明;
(3)設(shè)函數(shù)h(x)=g(x)(x>0),若h(2t)+mh(t)+4>0對任意的正實數(shù)t恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com