若橢圓的對稱軸為坐標(biāo)軸,長軸長與短軸長的和為18,焦距為6,則橢圓的方程為
   
【答案】分析:設(shè)出橢圓的長半軸與短半軸分別為a和b,根據(jù)長軸與短軸的和為18列出關(guān)于a與b的方程記作①,由焦距等于6求出c的值,根據(jù)橢圓的基本性質(zhì)a2-b2=c2,把c的值代入即可得到關(guān)于a與b的另一關(guān)系式記作②,將①②聯(lián)立即可求出a和b的值,然后利用a與b的值寫出橢圓的方程即可.
解答:解:設(shè)橢圓的長半軸與短半軸分別為a和b,
則2(a+b)=18,即a+b=9①,
由焦距為6,得到c=3,則a2-b2=c2=9②,
由①得到a=9-b③,把③代入②得:
(9-b)2-b2=9,化簡得:81-18b=9,解得b=4,把b=4代入①,解得a=5,
所以橢圓的方程為:+=1或+=1.
故答案為:+=1或+=1
點評:此題考查學(xué)生掌握橢圓的基本性質(zhì),會根據(jù)橢圓的長半軸與短半軸寫出橢圓的標(biāo)準(zhǔn)方程,是一道綜合題.學(xué)生做題時應(yīng)注意焦點在x軸和y軸上兩種情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓的對稱軸為坐標(biāo)軸,長軸長與短軸長的和為18,一個焦點的坐標(biāo)是(3,0),則橢圓的標(biāo)準(zhǔn)方程為(  )
A、
x2
9
+
y2
16
=1
B、
x2
25
+
y2
16
=1
C、
x2
16
+
y2
25
=1
D、
x2
16
+
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

定義變換可把平面直角坐標(biāo)系上的點變換到這一平面上的點.特別地,若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點.

(1)若橢圓的中心為坐標(biāo)原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程. 并求出當(dāng)時,其兩個焦點、經(jīng)變換公式變換后得到的點的坐標(biāo);

(2)當(dāng)時,求(1)中的橢圓在變換下的所有不動點的坐標(biāo);

(3)試探究:中心為坐標(biāo)原點、對稱軸為坐標(biāo)軸的雙曲線在變換

,)下的不動點的存在情況和個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012年河南省高二上第三次月考數(shù)學(xué) 題型:選擇題

若橢圓的對稱軸為坐標(biāo)軸,長軸長與短軸長的和為,一個焦點的坐標(biāo)是(3,0),則橢圓的標(biāo)準(zhǔn)方程為(  )

A.        B.       C.        D. 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

現(xiàn)有變換公式可把平面直角坐標(biāo)系上的一點變換到這一平面上的一點.

(1)若橢圓的中心為坐標(biāo)原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程,并求出其兩個焦點經(jīng)變換公式變換后得到的點的坐標(biāo);

(2) 若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點. 求(1)中的橢圓在變換下的所有不動點的坐標(biāo);

(3) 在(2)的基礎(chǔ)上,試探究:中心為坐標(biāo)原點、對稱軸為坐標(biāo)軸的橢圓和雙曲線在變換下的不動點的存在情況和個數(shù).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年福建省四地六校聯(lián)考高二第三次月考文科數(shù)學(xué)卷 題型:選擇題

若橢圓的對稱軸為坐標(biāo)軸,長軸長與短軸長的和為18,

一個焦點的坐標(biāo)是(3,0),則橢圓的標(biāo)準(zhǔn)方程為(   )

A.        B.       C.      D. 

 

查看答案和解析>>

同步練習(xí)冊答案