寫出“a+b=3”的一個充分非必要條件________.

a=1,b=2
分析:要寫出a+b=3的一個充分非必要條件,只要寫出一個條件能夠推出a+b=3,反之不一定成立即可.
解答:a+b=3”的一個充分非必要條件是a=1.b=2,
故答案為:a=1.b=2,
點評:本題看出充分非必要條件,本題解題的關(guān)鍵是理解充分非必要條件的意義,本題是一個基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

寫出“a+b=3”的一個充分非必要條件
a=1,b=2
a=1,b=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

寫出“a+b=3”的一個充分非必要條件______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(北京卷解析版) 題型:解答題

近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設(shè)置了相應(yīng)的垃圾箱。為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機抽取了該市三類垃圾箱中總計1000噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):

 

“廚余垃圾”箱

“可回收物”箱

“其他垃圾”箱

廚余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60

(Ⅰ)試估計廚余垃圾投放正確的概率

(Ⅱ)試估計生活垃圾投放錯誤的概率

(Ⅲ)假設(shè)廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分別為a,b,c,其中a>0,a+b+c=600.當(dāng)數(shù)據(jù)a,b,c,的方差最大時,寫出a,b,c的值(結(jié)論不要求證明),并求此時的值。

(注:,其中為數(shù)據(jù)的平均數(shù))

【解析】(1)廚余垃圾投放正確的概率約為

(2)設(shè)生活垃圾投放錯誤為事件A,則事件表示生活垃圾投放正確。事件的概率約為“廚余垃圾”箱里廚余垃圾量、“可回收物”箱里可回收物量與“其他垃圾”箱里其他垃圾量的總和除以生活垃圾總量,即約為,所以約為

(3)當(dāng)時,方差取得最大值,因為,

所以

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(北京卷解析版) 題型:解答題

近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設(shè)置了相應(yīng)的垃圾箱。為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機抽取了該市三類垃圾箱中總計1000噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):

 

“廚余垃圾”箱

“可回收物”箱

“其他垃圾”箱

廚余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60

(Ⅰ)試估計廚余垃圾投放正確的概率

(Ⅱ)試估計生活垃圾投放錯誤的概率

(Ⅲ)假設(shè)廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分別為a,b,c,其中a>0,a+b+c=600.當(dāng)數(shù)據(jù)a,b,c,的方差最大時,寫出a,b,c的值(結(jié)論不要求證明),并求此時的值。

(注:,其中為數(shù)據(jù)的平均數(shù))

【解析】(1)廚余垃圾投放正確的概率約為

(2)設(shè)生活垃圾投放錯誤為事件A,則事件表示生活垃圾投放正確。事件的概率約為“廚余垃圾”箱里廚余垃圾量、“可回收物”箱里可回收物量與“其他垃圾”箱里其他垃圾量的總和除以生活垃圾總量,即約為,所以約為

(3)當(dāng)時,方差取得最大值,因為

所以

 

查看答案和解析>>

同步練習(xí)冊答案