精英家教網 > 高中數學 > 題目詳情
設函數f(x)=x2-2x+b,且滿足f(2a)=b,f(a)=4求:
(1)函數f(x)的解析式;
(2)函數f(2x)的最小值及相應的x的值.
分析:(1)由f(2a)=b,代入可求b,然后再由f(a)=4可求b,進而可求函數解析式
(2)代入可得,f(2x)=22x-2•2x+5,利用換元法,結合二次函數的性質即可求解
解答:解:(1)∵f(2a)=b,
∴22a-2•2a+b=b
∴2a(2a-2)=0
∴a=1
∵f(a)=a2-2a+b=4
∴b=5
∴f(x)=x2-2x+5
(2)∴f(2x)=22x-2•2x+5
令2x=t,則f(t)=t2-2t+5=(t-1)2+4
當t=1時,函數有最小值4,此時2x=1,即x=0
點評:本題主要考查了待定系數 求解函數的解析式及二次函數的最值的求解,屬于基礎試題
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=x2+|x-2|-1,x∈R.
(1)判斷函數f(x)的奇偶性;
(2)求函數f(x)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0與g(x0)<0同時成立,則實數a的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)討論f(x)的單調性.
(2)若f(x)有兩個極值點x1,x2,且x1<x2,求f(x2)的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲線y=f(x)在x=1處的切線為y=x,求實數m的值;
(2)當m=2時,若方程f(x)-h(x)=0在[1,3]上恰好有兩個不同的實數解,求實數a的取值范圍;
(3)是否存在實數m,使函數f(x)和函數h(x)在公共定義域上具有相同的單調性?若存在,求出m的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定義域內既有極大值又有極小值,求實數a的取值范圍;
(3)求證:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步練習冊答案