17.等差數(shù)列{an}中,a1=2,a5=a4+2,則a3=( 。
A.4B.10C.8D.6

分析 利用等差數(shù)列通項(xiàng)公式求出首項(xiàng)和公差,由此能求出a3

解答 解:∵等差數(shù)列{an}中,a1=2,a5=a4+2,
∴$\left\{\begin{array}{l}{{a}_{1}=2}\\{{a}_{1}+4d={a}_{1}+3d+2}\end{array}\right.$,
解得a1=2,d=d=2,
∴a3=2+2×2=6.
故選:D.

點(diǎn)評(píng) 本題考查等差數(shù)列的第3項(xiàng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.直線mx-y-m+2=0恒過定點(diǎn)A,若直線l過點(diǎn)A且與2x+y-2=0平行,則直線l的方程為( 。
A.2x+y-4=0B.2x+y+4=0C.x-2y+3=0D.x-2y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.“m=-1”是“直線x+y=0和直線x+my=0互相垂直”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)x∈R,定義符號(hào)函數(shù)sng(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,則下列正確的是( 。
A.sinx•sng(x)=sin|x|.B.sinx•sng(x)=|sinx|C.|sinx|•sng(x)=sin|x|D.sin|x|•sng(x)=|sinx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.函數(shù)$f(x)=2sin(2x+\frac{π}{6})$的部分圖象如圖所示.
(1)寫出f(x)的最小正周期及圖中x0、y0的值;
(2)求f(x)在區(qū)間$[-\frac{π}{4},\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}的前n項(xiàng)和為Sn,若Sn=1+2an(n≥2),且a1=2,則S20( 。
A.219-1B.221-2C.219+1D.221+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)=x2-ax+lnx,a∈R.
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的極小值;
(2)令g(x)=x2-f(x),是否存在實(shí)數(shù)a,當(dāng)x∈[1,e](e是自然對(duì)數(shù)的底數(shù))時(shí),函數(shù)g(x)取得最小值為1.若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=cos2x+asinx-$\frac{a}{4}$-$\frac{1}{2}$.
(1)用a表示f(x)在[0,$\frac{π}{2}$]上的最小值M(a);
(2)當(dāng)M(a)=$\frac{1}{4}$時(shí),求a的值,并對(duì)此a值求f(x)的最大值;
(3)問a取何值時(shí),方程f(x)=(1+a)sinx在[0,π)上有兩解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若$\overrightarrow{a}$,$\overrightarrow$是單位向量,且$\overrightarrow{a}$•$\overrightarrow$=$\frac{1}{3}$,若向量$\overrightarrow{c}$滿足$\overrightarrow{c}$•$\overrightarrow{a}$=$\overrightarrow{c}$•$\overrightarrow$=2,則|$\overrightarrow{c}$|=$\sqrt{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案