若一直角三角形的兩直角邊的長都是0到1之間的任意實(shí)數(shù),那么事件“斜邊長小于
3
4
”的概率為______.
設(shè)兩直角邊分別為x,y
則可得
0<x<1
0<y<1
,所表示的平面區(qū)域如圖所示的正方形OABC,面積為1
記“斜邊長小于
3
4
”為事件A則A:
0<x<1
0<y<1
x2+y2
9
16
是以
3
4
為半徑的圓的內(nèi)部且在正方形內(nèi)的
1
4
圓面積為
1
4
π×
9
16
=
64

由幾何概率的計(jì)算公式可得P(A)=
64

故答案為:
64

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某人欲從某車站乘車出差,已知該站發(fā)往各站的客車均每小時一班,求此人等車時間不多于10分鐘的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)點(diǎn)A為半徑是1的圓O上一定點(diǎn),在圓周上等可能地任取一點(diǎn)B.
(1)求弦AB的長超過圓內(nèi)接正三角形邊長的概率;
(2)求弦AB的長超過圓半徑的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知正方形ABCD的邊長為2,H是邊DA的中點(diǎn).在正方形ABCD內(nèi)部隨機(jī)取一點(diǎn)P,則滿足|PH|<
2
的概率為( 。
A.
π
8
B.
π
8
+
1
4
C.
π
4
D.
π
4
+
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知方程x2+2ax+b2=0是關(guān)于x的一元二次方程.
(1)若a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實(shí)數(shù)根的概率;
(2)若a,b分別是區(qū)間[0,3],[0,2]內(nèi)的隨機(jī)數(shù),求上述方程有實(shí)數(shù)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個游戲轉(zhuǎn)盤上有四種顏色:紅、黃、藍(lán)、黑,并且它們所占面積的比為6:2:1:4,則指針停在紅色或藍(lán)色的區(qū)域的概率為( 。
A.
6
13
B.
7
13
C.
4
13
D.
10
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在棱長為a的正方體ABCD-A1B1C1D1內(nèi)任取一點(diǎn)P,則點(diǎn)P到點(diǎn)A的距離小于或等于a的概率為______.(V=
4
3
πR3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求滿足下列條件的概率
(1)先后拋擲一枚骰子兩次,將得到的點(diǎn)數(shù)分別記為a,b.
①求a+b=4的概率;
②求點(diǎn)(a,b)滿足a+b≤4的概率;
(2)設(shè)a,b均是從區(qū)間[0,6]任取的一個數(shù),求滿足a+b≤4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在區(qū)間[0,4]內(nèi)隨機(jī)取兩個數(shù)a、b,則使得函數(shù)f(x)=x2+ax+b2有零點(diǎn)的概率為______.

查看答案和解析>>

同步練習(xí)冊答案