精英家教網 > 高中數學 > 題目詳情
已知一橢圓經過點(2,-3)且與橢圓9x2+4y2=36有共同的焦點
(1)求橢圓方程;
(2)若P為橢圓上一點,且,P,F1,F2是一個直角三角形的頂點,且|PF1|>|PF2|,求|PF1|:|PF2|的值.
【答案】分析:(1)由題意可得,可設所求橢圓方程為  ,代入(2,-3)點,解得m=10,或m=-2(舍),得到所求方程.
 (2)①若∠PF2F1=900 ,由橢圓的定義可得,
于是|PF1|:|PF2|=2. ②若∠F1PF2=90,則,,由△<0 知無解,即這樣的三角形不存在.
解答:解:(1)∵
與之有共同焦點的橢圓可設為,代入(2,-3)點,
解得m=10,或m=-2(舍),故所求方程為
(2)①若∠PF2F1=900 ,
,
于是|PF1|:|PF2|=2.
②若∠F1PF2=90,則,,
∵△<0,∴無解,即這樣的三角形不存在,
綜合1,2 知,|PF1|:|PF2|=2.
點評:本題考查橢圓的定義、標準方程,以及簡單性質的應用,求出|PF1|和|PF2|的值,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知一橢圓經過點(2,-3)且與橢圓9x2+4y2=36有共同的焦點
(1)求橢圓方程;
(2)若P為橢圓上一點,且,P,F1,F2是一個直角三角形的頂點,且|PF1|>|PF2|,求|PF1|:|PF2|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(14分)已知一橢圓經過點(2,―3)且與橢圓有共同的焦點

(1)求橢圓方程;

(2)若P為橢圓上一點,且,P, ,是一個直角三角形的頂點,且,求的值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知一橢圓經過點(2,-3)且與橢圓9x2+4y2=36有共同的焦點
(1)求橢圓方程;
(2)若P為橢圓上一點,且,P,F1,F2是一個直角三角形的頂點,且|PF1|>|PF2|,求|PF1|:|PF2|的值.

查看答案和解析>>

科目:高中數學 來源:2010年天津五中高考數學二模試卷(文科)(解析版) 題型:解答題

已知一橢圓經過點(2,-3)且與橢圓9x2+4y2=36有共同的焦點
(1)求橢圓方程;
(2)若P為橢圓上一點,且,P,F1,F2是一個直角三角形的頂點,且|PF1|>|PF2|,求|PF1|:|PF2|的值.

查看答案和解析>>

同步練習冊答案