函數(shù)f(x)對任意實數(shù)x滿足條件f(x+2)=-f(x),若f(1)=-5,則f[f(5)]=   
【答案】分析:對于此類問題的求解常采用“從內(nèi)到外”的求解方法即先求f(5)的值再求f(f(5))的值.而在求f(5)時結合給出的條件f(1)=-5故需根據(jù)對任意實數(shù)x滿足條件f(x+2)=-f(x)這一條件求出函數(shù)f(x)的周期.
解答:解:∵對任意實數(shù)x滿足條件f(x+2)=-f(x)
∴f(x+4)=f[(x+2)+2]=-f(x+2)=-(-f(x))=f(x)
∴函數(shù)f(x)的周期為4
∴f(5)=f(5-4)=f(1)=-5
∴f[f(5)]=f(-5)=f(-5+4)=f(-1)=-f(-1+2)=-f(1)=5
故答案為5
點評:本題主要考察根據(jù)函數(shù)的遞推關系式求函數(shù)值.解題的關鍵是求出函數(shù)f(x)的周期4!
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

8、例5.已知函數(shù)f(x)對其定義域內(nèi)的任意兩個數(shù)a,b,當a<b時,都有f(a)<f(b),證明:f(x)=0至多有一個實根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)對任意x∈R,滿足f(x)=f(4-x).如果方程f(x)=0恰有2011個實根,則所有這些實根之和為( 。
A、0B、2011C、4022D、8044

查看答案和解析>>

科目:高中數(shù)學 來源:江西省重點中學協(xié)作體2012屆高三第一次聯(lián)考數(shù)學文科試題 題型:013

設f(x),g(x),h(x)是R上的任意實值函數(shù),如下定義兩個函數(shù)(f·g)x和(f·g)(x):對任意x∈R,(f·g)(x)=f(g(x));(f·g)(x)=f(x)g(x),則下列等式恒成立的是

[  ]
A.

((f·g)·h)(x)=((f·h)·(g·h))(x)

B.

((f·g)·h)(x)=((f·h)·(g·h))(x)

C.

((f·g)·h)(x)=((f·h)·(g·h))(x)

D.

((f·g)·h)(x)=((f·h)·(g·h))(x)■(選項一樣)

查看答案和解析>>

科目:高中數(shù)學 來源:江西省重點中學協(xié)作體2012屆高三第一次聯(lián)考數(shù)學理科試題 題型:013

設f(x),g(x),h(x)是R上的實值函數(shù),如下定義兩個函數(shù)(f·g)(x)和(f·g)(x):對任意x∈R,(f·g)(x)=f(g(x));(f·g)(x)=f(x)g(x),則下列等式恒成立的是

[  ]
A.

((f·g)·h)(x)=((f·h)·(g·h))(x)

B.

((f·g)·h)(x)=((f·h)·(g·h))(x)

C.

((f·g)·h)(x)=((f·h)·(g·h))(x)

D.

((f·g)·h)(x)=((f·h)·(g·h))(x)

查看答案和解析>>

科目:高中數(shù)學 來源:高考數(shù)學一輪復習必備(第05課時):第一章 集合與簡易邏輯-簡易邏輯(解析版) 題型:解答題

例5.已知函數(shù)f(x)對其定義域內(nèi)的任意兩個數(shù)a,b,當a<b時,都有f(a)<f(b),證明:f(x)=0至多有一個實根.

查看答案和解析>>

同步練習冊答案