【題目】在湖南師大附中的校園歌手大賽決賽中,有6位參賽選手(1號至6號)登臺演出,由現場的100位同學投票選出最受歡迎的歌手,各位同學須彼此獨立地在投票器上選出3位侯選人,其中甲同學是1號選手的同班同學,必選1號,另在2號至6號選手中隨機選2名;乙同學不欣賞2號選手,必不選2號,在其他5位選手中隨機選出3名;丙同學對6位選手的演唱沒有偏愛,因此在1號至6號選手中隨機選出3名.
(1)求同學甲選中3號且同學乙未選中3號選手的概率;
(2)設3號選手得到甲、乙、丙三位同學的票數之和為X,求X的分布列和數學期望.
【答案】(1);(2)詳見解析.
【解析】
(1)設A表示事件:“甲選中3號歌手”,事件B表示“乙選中3號歌手”,事件C表示“丙選中3號歌手”,由等可能事件概率公式求出P(A),P(B),由此利用相互獨立事件的概率乘法公式和對立事件的概率公式能求出概率.
(2)先由等可能事件概率計算公式求出P(C),由已知得X的可能取值為0,1,2,3,分別求出相應的概率,由此能求出X的分布列及數學期望.
設表示事件“甲同學選中3號選手”,
表示事件“乙同學選中3號選手”,
表示事件“丙同學選中3號選手”,則
(1),
,
所以.
(2),
可能的取值為0,1,2,3,
,
,
,
.
所以的分布列為:
0 | 1 | 2 | 3 | |
的數學期望
.
科目:高中數學 來源: 題型:
【題目】下面幾種推理過程是演繹推理的是( �。�
A. 某校高三有8個班,1班有51人,2班有53人,3班有52人,由此推測各班人數都超過50人
B. 由三角形的性質,推測空間四面體的性質
C. 平行四邊形的對角線互相平分,菱形是平行四邊形,所以菱形的對角線互相平分
D. 在數列中,
,可得
,由此歸納出
的通項公式
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點是拋物線
上一點,
為
的焦點.
(1)若,
是
上的兩點,證明:
,
,
依次成等比數列.
(2)過作兩條互相垂直的直線與
的另一個交點分別交于
,
(
在
的上方),求向量
在
軸正方向上的投影的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一位幼兒園老師給班上k(k≥3)個小朋友分糖果.她發(fā)現糖果盒中原有糖果數為a0,就先從別處抓2塊糖加入盒中,然后把盒內糖果的分給第一個小朋友;再從別處抓2塊糖加入盒中,然后把盒內糖果的
分給第二個小朋友;…,以后她總是在分給一個小朋友后,就從別處抓2塊糖放入盒中,然后把盒內糖果的
分給第n(n=1,2,3,…k)個小朋友.如果設分給第n個小朋友后(未加入2塊糖果前)盒內剩下的糖果數為an.
(1)當k=3,a0=12時,分別求a1,a2,a3;
(2)請用an-1表示an;令bn=(n+1)an,求數列{bn}的通項公式;
(3)是否存在正整數k(k≥3)和非負整數a0,使得數列{an}(n≤k)成等差數列,如果存在,請求出所有的k和a0,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線
的參數方程為
(
為參數).以
為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的極坐標方程和曲線
的直角坐標方程;
(2)設動直線:
分別與曲線
,
相交于點
,
,求當
為何值時,
取最大值,并求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學在全校范圍內舉辦了一場“中國詩詞大會”的比賽,規(guī)定初賽測試成績不小于160分的學生進入決賽階段比賽.現有200名學生參加測試,并將所有測試成績統(tǒng)計如下表:
分數段 | 頻數 | 頻率 |
6 | 0.03 | |
0.38 | ||
100 | 0.5 | |
6 | 0.03 | |
合計 | 200 | 1 |
(1)計算的值;
(2)現利用分層抽樣的方法從進入決賽的學生中選擇6人,再從選出的6人中選2人做進一步的研究,求選擇的2人中至少有1人的分數在的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com