設(shè)F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,P是其右準線上縱坐標為
3
c(c為半焦距)的點,且F1F2=F2P,則橢圓的離心率是______.

精英家教網(wǎng)
解析:如圖有P(
a2
c
3
c
),設(shè)右準線交x軸于H點,
∵F2P=F1F2=2c,且PH=
3
c,故∠PF2H=60°;
∴F2H=c,OH=
a2
c
=2c?e2=
1
2
?e=
2
2

故答案:
2
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,若在直線x=
a2
c
上存在點P,使線段PF1的中垂線過點F2,則橢圓的離心率的取值范圍是
3
3
,1)
3
3
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點,若橢圓C上的一點A(1,
3
2
)到F1,F(xiàn)2的距離之和為4.
(1)求橢圓方程;
(2)若M,N是橢圓C上兩個不同的點,線段MN的垂直平分線與x軸交于點P,求證:|
OP
|<
1
2
;
(3)若M,N是橢圓C上兩個不同的點,Q是橢圓C上不同于M,N的任意一點,若直線QM,QN的斜率分別為KQM•KQN.問:“點M,N關(guān)于原點對稱”是KQM•KQN=-
3
4
的什么條件?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•南匯區(qū)二模)設(shè)F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,其右焦點是直線y=x-1與x軸的交點,短軸的長是焦距的2倍.
(1)求橢圓的方程;
(2)若P是該橢圓上的一個動點,求
PF1
PF2
的最大值和最小值;
(3)是否存在過點A(5,0)的直線l與橢圓交于不同的兩點C、D,使得|F2C|=|F2D|?若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•安徽)設(shè)橢圓E:
x2
a2
+
y2
1-a2
=1
的焦點在x軸上
(1)若橢圓E的焦距為1,求橢圓E的方程;
(2)設(shè)F1,F(xiàn)2分別是橢圓E的左、右焦點,P為橢圓E上第一象限內(nèi)的點,直線F2P交y軸于點Q,并且F1P⊥F1Q,證明:當(dāng)a變化時,點P在某定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•南匯區(qū)二模)設(shè)F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,其右焦點是直線y=x-1與x軸的交點,短軸的長是焦距的2倍.
(1)求橢圓的方程;
(2)若P是該橢圓上的一個動點,求
PF1
PF2
的最大值和最小值;
(3)若P是該橢圓上的一個動點,點A(5,0),求線段AP中點M的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案