已知數(shù)列是等差數(shù)列,是等比數(shù)列,且,
(Ⅰ)求數(shù)列的通項(xiàng)公式
(Ⅱ)數(shù)列滿足,求數(shù)列的前項(xiàng)和

(Ⅰ) ;
(Ⅱ),又 。

解析試題分析:(Ⅰ)設(shè)的公差為,的公比為
,得,從而
因此                 3分
, 
從而,故            6分
(Ⅱ)

     9分
兩式相減得

,又             12分
考點(diǎn):本題主要考查等差數(shù)列、等比數(shù)列的通項(xiàng)公式、求和公式,“錯(cuò)位相減法”。
點(diǎn)評:中檔題,涉及等差數(shù)列通項(xiàng)公式問題,往往建立相關(guān)元素的方程組!板e(cuò)位相減法”、“裂項(xiàng)相消法”、“分組求和法”是高考常?疾榈綌(shù)列求和方法。本題較為典型。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列{an}中,為其前n項(xiàng)和,且
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知已知是等差數(shù)列,期中,
求: 1.的通項(xiàng)公式
2.數(shù)列從哪一項(xiàng)開始小于0?
3.求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足:,,的前n項(xiàng)和為
(Ⅰ)求;
(Ⅱ)令bn=(nN*),求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{}的前項(xiàng)和為(為常數(shù),N*).
(1)求,,;
(2)若數(shù)列{}為等比數(shù)列,求常數(shù)的值及;
(3)對于(2)中的,記,若對任意的正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知數(shù)列的前項(xiàng)和為,,,求
(2)已知等差數(shù)列的前項(xiàng)和為,求數(shù)列的前2012項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,
(1)若,求;           
(2)若,求的前6項(xiàng)和;
(3)若,證明是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列 的前項(xiàng)和為,若,,求:
(1)數(shù)列的通項(xiàng)公式;
(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)數(shù)列的前項(xiàng)的和為,對于任意的自然數(shù),
(Ⅰ)求證:數(shù)列是等差數(shù)列,并求通項(xiàng)公式
(Ⅱ)設(shè),求和

查看答案和解析>>

同步練習(xí)冊答案