考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(I)由于{
}是等差數(shù)列,a
1=1,
+
+
=12.可得
3×=12,利用等差數(shù)列的通項(xiàng)公式可得
=
+d(3-1),解得d=
.可得S
n=
n2-n.
利用a
n=S
n-S
n-1即可得出.
(II)a
n+1+
≥λ-140化為
≥λ,令n-1=t≥1,則
=
=3t+
+145,再利用基本不等式的性質(zhì)即可得出.
解答:
解:(I)∵{
}是等差數(shù)列,a
1=1,
+
+
=12.
∴
3×=12,∴
=4.
∴
=
+d(3-1),即4=1+2d,解得d=
.
∴
=1+
(n-1),
∴S
n=
n2-n.
∴a
n=S
n-S
n-1=
n2-n-[(n-1)2-(n-1)]=3n-2(n≥2),
當(dāng)n=1時(shí),也成立.
∴a
n=3n-2.
(II)a
n+1+
≥λ-140化為3n+141+
≥λ,化為
≥λ,
令n-1=t≥1,則
=
=3t+
+145
≥3×2+145=169,當(dāng)t=4,即n=5時(shí),取等號(hào).
∴λ≤169.
點(diǎn)評(píng):本題考查了等差數(shù)列的通項(xiàng)公式及其性質(zhì)、遞推式的應(yīng)用、基本不等式的性質(zhì),考查了恒成立問(wèn)題的等價(jià)轉(zhuǎn)化方法,考查了推理能力與計(jì)算能力,屬于難題.