在橢圓
x2
a2
+
y2
b2
=1(a>b>0)中,當(dāng)離心率e趨近于0時(shí),短半軸b就趨近于長(zhǎng)半軸a,此時(shí)橢圓就趨近于圓.類比圓的面積公式,在橢圓中,S=
 
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:半徑為r的圓的面積公式為πr2=π•r•r,利用類比推理,可得橢圓C的面積.
解答: 解:半徑為r的圓的面積公式為πr2=π•r•r,在橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)中,當(dāng)離心率e趨近于0,橢圓就趨近于圓,a,b無(wú)限接近圓的半徑r,
∴橢圓C的面積S橢圓=πab.
故答案為:πab.
點(diǎn)評(píng):本題考查類比推理,考查學(xué)生分析解決問(wèn)題的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線方程為2x+y=0,且頂點(diǎn)到漸近線的距離為
2
5
5
.  
(1)求此雙曲線的方程;
(2)設(shè)點(diǎn)P為雙曲線上一點(diǎn),A、B兩點(diǎn)在雙曲線的漸近線上,且分別位于第一、第二象限,若
AP
=
PB
,求△AOP的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)均不為0的數(shù)列{an}的前n項(xiàng)和為Sn,且滿足
S1+2
a1
+
S2+2
a2
+…+
Sn+2
an
=2n(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足b1=2,bn+1-2bn=nan+1(n∈N*),求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫出函數(shù)y=sin(2x-
π
6
)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙、丙、丁四人商量去看電影.
甲說(shuō):乙去我才去;
乙說(shuō):丙去我才去;
丙說(shuō):甲不去我就不去;
丁說(shuō):乙不去我就不去.
最后有人去看電影,有人沒(méi)去看電影,去的人是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)太陽(yáng)光線與地面成30°角時(shí),長(zhǎng)為18cm的一支鉛筆在地面上的影子最長(zhǎng)為
 
cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某高三學(xué)生在高三一輪復(fù)習(xí)生物學(xué)科的22次考試中,所的分?jǐn)?shù)如莖葉圖所示,則此同學(xué)生物考試分?jǐn)?shù)的極差與中位數(shù)之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=kx+b在區(qū)間[1,2]上的最大值比最小值大2,則k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(cosx,2),
b
=(2sinx,3),且
a
b
,則tan(x+
π
4
)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案