已知函數(shù)f(x)=
log4x,x>1
2-x,x≤1
,則f(f(-4))的值為( 。
A、-4B、4C、-2D、2
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)分段函數(shù)的表達(dá)式,直接代入即可得到結(jié)論.
解答:解:由分段函數(shù)可得f(-4)=24=16,
則f(16)=log416=2,
即f(f(-4))=f(16)=2,
故選:D
點(diǎn)評(píng):本題主要考查函數(shù)值的計(jì)算,利用分段函數(shù)的表達(dá)式直接求解即可,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用反證法證明命題:“已知a,b為實(shí)數(shù),則方程x2+ax+b=0至少有一個(gè)實(shí)根”時(shí),要做的假設(shè)是( 。
A、方程x2+ax+b=0沒有實(shí)根
B、方程x2+ax+b=0至多有一個(gè)實(shí)根
C、方程x2+ax+b=0至多有兩個(gè)實(shí)根
D、方程x2+ax+b=0恰好有兩個(gè)實(shí)根

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x)滿足f(x)=
1-|2x-1|, x∈[0,1)
2f(x-1), x∈(1,+∞)
,則f(-
21
2
)的值是( 。
A、0B、-512
C、-1024D、-2048

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合P={x,y|3x-4y+3≥0,4x+3y-6≤0,y≥0,x≥0},Q={(x,y)|(x-a)2+(y-b)2≤r2},若點(diǎn)M∈P是點(diǎn)M∈Q的必要條件,則當(dāng)r最大時(shí),ab的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镽,若存在常數(shù)M>0,使|f(x)|≤M|x|對(duì)一切實(shí)數(shù)x均成立.則稱函數(shù)f(x)為F函數(shù).現(xiàn)給出下列函數(shù)①f(x)=2x,②f(x)=sinx+cosx,③f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),且對(duì)一切x1,x2,均有|f(x1)-f(x2)|≤2|x1-x2|.其中是F函數(shù)的有( 。
A、3個(gè)B、2個(gè)C、1個(gè)D、0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知lg3=a,lg7=b,則lg
3
49
的值為( 。
A、a-b2
B、a-2b
C、
b2
a
D、
a
b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=|x-1|+|x-4|的最小值為( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

凡自然數(shù)是整數(shù),4是自然數(shù),所以4是整數(shù).以上三段論推理( 。
A、兩個(gè)“自然數(shù)”概念不一致
B、推理形式不正確
C、正確
D、“兩個(gè)整數(shù)”概念不一致

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年四川省高三二診模擬文科數(shù)學(xué)試卷(解析版) 題型:選擇題

實(shí)數(shù)、滿足=的取值范圍是( )

A. [-1,0] B. -∞,0] C. [-1,+∞ D. [-1,1

 

查看答案和解析>>

同步練習(xí)冊(cè)答案