2.已知直線l1、l2,平面α,l1∥l2,l1∥α,那么l2與平面α的關(guān)系是(  )
A.l1∥αB.l2⊥αC.l2∥α或l2D.l2與α相交

分析 以正方體為載體,列舉出所有情況,能求出結(jié)果.

解答 解:在正方體ABCD-A1B1C1D1中,
取AB=l1,CD=l2,
當(dāng)取面CDD1C1為平面α?xí)r,
∴滿足l1∥l2,l1∥α,此時(shí)l2?α;
當(dāng)取面B1A1D1C1為平面α?xí)r,
∴滿足l1∥l2,l1∥α,此時(shí)l2∥α.
∴當(dāng)直線l1、l2,平面α,l1∥l2,l1∥α?xí)r,
l2與平面α的關(guān)系是l2∥α或l2?α.
故選:C.

點(diǎn)評(píng) 本題考查線面關(guān)系的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)f(x)=$\left\{{\begin{array}{l}{x+2(x≤-1)}\\{{x^2}(-1<x<2)}\\{2x(x≥2)}\end{array}}$,
(1)在下列直角坐標(biāo)系中畫(huà)出f(x)的圖象;
(2)若f(x)=3,求x的值;
(3)看圖象寫(xiě)出函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若函數(shù)f(x)=(${\frac{1}{2}}$)|1-x|+m有零點(diǎn),則m的取值范圍是-1≤m<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.給出如圖所示的對(duì)應(yīng):

其中構(gòu)成從A到B的映射的個(gè)數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為y=$\frac{\sqrt{3}}{3}$x,過(guò)焦點(diǎn)且垂直于y軸的弦長(zhǎng)為6,
(1)求雙曲線方程;
(2)過(guò)雙曲線的下焦點(diǎn)作傾角為45°的直線交曲線與MN,求MN的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知點(diǎn)M與兩個(gè)定點(diǎn)O(0,0),A(3,0)的距離之比為$\frac{1}{2}$,則點(diǎn)M的軌跡是( 。
A.B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,AB是⊙O的直徑,P是⊙O所在平面外一點(diǎn),PA垂直于⊙O所在平面,且PA=AB=10,設(shè)點(diǎn)C為⊙O上異于A、B的任意一點(diǎn).
(1)求證:BC⊥平面PAC;
(2)若AC=6,求三棱錐C-PAB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow$|=2,且$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{3π}{4}$,則$\overrightarrow$在$\overrightarrow{a}$方向上的投影為-$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖所示,在平面直角坐標(biāo)系xOy中,設(shè)橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),其中b=$\frac{\sqrt{3}}{2}$a,F(xiàn)為橢圓的右焦點(diǎn),P(1,1)為橢圓E內(nèi)一點(diǎn),PF⊥x軸.
(1)求橢圓E的方程;
(2)過(guò)P點(diǎn)作斜率為k1,k2的兩條直線分別與橢圓交于點(diǎn)A,C和B,D.若滿足|AP||PC|=|BP||DP|,問(wèn)k1+k2是否為定值?若是,請(qǐng)求出此定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案