精英家教網 > 高中數學 > 題目詳情
正三棱錐P—ABC中,∠APB=∠BPC=∠CPA=90°,PA=PB=PC=a,AB的中點M,一小蜜蜂沿錐體側面由M爬到C點,最短路程是                            (   )
A.B.C.D.
A
本題考查空間幾何體的性質,空間想象能力及轉化思想.
 
在正三棱錐中,所以
則正三棱錐的側面展開圖如圖;所求最短路程就是側面展開圖中的長;因為,所以故選A
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,四棱錐中,⊥底面,底面為梯形,,,且,點是棱上的動點.
(Ⅰ)當∥平面時,確定點在棱上的位置;
(Ⅱ)在(Ⅰ)的條件下,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分16分)如圖①,,分別是直角三角形的中點,,沿將三角形折成如圖②所示的銳二面角,若為線段中點.求證:
(1)直線平面
(2)平面平面
      

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

敘述并證明直線與平面垂直的判定定理.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,正方體的棱長為,過點作平面的垂線,垂足為點,則以下命題中,錯誤的命題是( 。
A.點的垂心
B.的延長線經過點
C.垂直平面
D.直線所成角為

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)

如圖,矩形中,,,上的點,且,
(Ⅰ)求證:平面
(Ⅱ)求證:平面;
(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分14分)如圖,在四棱錐E-ABCD中,底面ABCD為正方形, AE⊥平面CDE,已知AE=3,DE=4.

(Ⅰ)若F為DE的中點,求證:BE//平面ACF;
(Ⅱ)求直線BE與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,PA垂直于矩形 ABCD所在的平面,M、N分別是AB、PC的中點
⑴求證:MN∥平面PAD;
⑵若,求證:MN⊥平面PCD.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知三條不同的直線,c和平面,有以下六個命題:
①若   ②若異面
③若   ④若
⑤若直線異面,異面,則異面
⑥若直線相交,相交,則相交
其中是真命題的編號為____              。    

查看答案和解析>>

同步練習冊答案