若數(shù)列為( )
A.遞增數(shù)列
B.遞減數(shù)列
C.從某項(xiàng)后為遞減
D.從某項(xiàng)后為遞增
【答案】分析:,當(dāng)n!<10n時(shí),數(shù)列{an}為遞減數(shù)列,當(dāng)n!>10n時(shí),數(shù)列{an}為遞遞數(shù)列.
解答:解:∵,
∴當(dāng)n!<10n時(shí),數(shù)列{an}為遞減數(shù)列,
當(dāng)n!>10n時(shí),數(shù)列{an}為遞遞數(shù)列,
故選D.
點(diǎn)評(píng):本題考查數(shù)列的單調(diào)性,解題時(shí)要認(rèn)真審題,注意區(qū)分n!和10n的大。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足a1=a(a為常數(shù),a∈R),an+1=2n-3an(n∈N*),設(shè)bn=
an2n
(n∈N*).
(1)求數(shù)列{bn}所滿(mǎn)足的遞推公式;
(2)求常數(shù)c、q使得bn+1-c=q(bn-c)對(duì)一切n∈N*恒成立;
(3)求數(shù)列{an}通項(xiàng)公式,并討論:是否存在常數(shù)a,使得數(shù)列{an}為遞增數(shù)列?若存在,求出所有這樣的常數(shù)a;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若對(duì)于任意的n∈N*,都有Sn=2an-3n.
(1)求數(shù)列{an}的首項(xiàng)a1與遞推關(guān)系式:an+1=f(an);
(2)先閱讀下面定理:“若數(shù)列{an}有遞推關(guān)系an+1=Aan+B,其中A、B為常數(shù),且A≠1,B≠0,則數(shù)列{an-
B1-A
}
是以A為公比的等比數(shù)列.”請(qǐng)你在第(1)題的基礎(chǔ)上應(yīng)用本定理,求數(shù)列{an}的通項(xiàng)公式;
(3)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•西城區(qū)二模)對(duì)數(shù)列{an},如果?k∈N*及λ1,λ2,…,λk∈R,使an+k1an+k-12an+k-2+…+λkan成立,其中n∈N*,則稱(chēng){an}為k階遞歸數(shù)列.給出下列三個(gè)結(jié)論:
①若{an}是等比數(shù)列,則{an}為1階遞歸數(shù)列;
②若{an}是等差數(shù)列,則{an}為2階遞歸數(shù)列;
③若數(shù)列{an}的通項(xiàng)公式為an=n2,則{an}為3階遞歸數(shù)列.
其中,正確結(jié)論的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黃浦區(qū)一模)已知a<b,且a2-a-6=0,b2-b-6=0,數(shù)列{an}、{bn}滿(mǎn)足a1=1,a2=-6a,an+1=6an-9an-1(n≥2,n∈N*),bn=an+1-ban(n∈N*).
(1)求證數(shù)列{bn}是等比數(shù)列;
(2)已知數(shù)列{cn}滿(mǎn)足cn=
an3n
(n∈N*),試建立數(shù)列{cn}的遞推公式(要求不含an或bn);
(3)若數(shù)列{an}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西師大附中高三5月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

對(duì)數(shù)列,如果,使成立,其中,則稱(chēng)階遞歸數(shù)列.給出下列三個(gè)結(jié)論:

①        若是等比數(shù)列,則階遞歸數(shù)列;

②        若是等差數(shù)列,則階遞歸數(shù)列;

③        若數(shù)列的通項(xiàng)公式為,則階遞歸數(shù)列.

其中正確結(jié)論的個(gè)數(shù)是(   )

A.0              B.1             C.2             D.3

 

查看答案和解析>>

同步練習(xí)冊(cè)答案